time-to-botec/squiggle/node_modules/@stdlib/stats/base/snanvariancepn/src/snanvariancepn.c
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

244 lines
5.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/snanvariancepn.h"
#include <stdint.h>
/**
* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
*
* ## Method
*
* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
*
* ## References
*
* - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 78399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
*
* @private
* @param N number of indexed elements
* @param W two-element output array
* @param X input array
* @param stride stride length
* @return output value
*/
static void snansumpw( const int64_t N, double *W, const float *X, const int64_t stride ) {
int64_t ix;
float *xp1;
float *xp2;
float sum;
int64_t M;
int64_t n;
int64_t i;
float s0;
float s1;
float s2;
float s3;
float s4;
float s5;
float s6;
float s7;
float v;
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
if ( N < 8 ) {
// Use simple summation...
sum = 0.0f;
n = 0;
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
sum += X[ ix ];
n += 1;
}
ix += stride;
}
W[ 0 ] += (double)sum;
W[ 1 ] += (double)n;
return;
}
// Blocksize for pairwise summation: 128 (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.)
if ( N <= 128 ) {
// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
s0 = 0.0f;
s1 = 0.0f;
s2 = 0.0f;
s3 = 0.0f;
s4 = 0.0f;
s5 = 0.0f;
s6 = 0.0f;
s7 = 0.0f;
n = 0;
M = N % 8;
for ( i = 0; i < N-M; i += 8 ) {
v = X[ ix ];
if ( v == v ) {
s0 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s1 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s2 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s3 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s4 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s5 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s6 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s7 += v;
n += 1;
}
ix += stride;
}
// Pairwise sum the accumulators:
sum = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
// Clean-up loop...
for (; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
sum += X[ ix ];
n += 1;
}
ix += stride;
}
W[ 0 ] += (double)sum;
W[ 1 ] += (double)n;
return;
}
// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
n = N / 2;
n -= n % 8;
if ( stride < 0 ) {
xp1 = (float *)X + ( (n-N)*stride );
xp2 = (float *)X;
} else {
xp1 = (float *)X;
xp2 = (float *)X + ( n*stride );
}
snansumpw( n, W, xp1, stride );
snansumpw( N-n, W, xp2, stride );
}
/**
* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param stride stride length
* @return output value
*/
float stdlib_strided_snanvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride ) {
double W[] = { 0.0, 0.0 };
int64_t ix;
int64_t i;
double nc;
double dM;
double n;
float M2;
float mu;
float M;
float d;
float v;
if ( N <= 0 ) {
return 0.0f / 0.0f; // NaN
}
if ( N == 1 || stride == 0 ) {
v = X[ 0 ];
if ( v == v && (double)N-(double)correction > 0.0 ) {
return 0.0f;
}
return 0.0f / 0.0f; // NaN
}
// Compute an estimate for the mean...
snansumpw( N, W, X, stride );
n = W[ 1 ];
nc = n - (double)correction;
if ( nc <= 0.0 ) {
return 0.0f / 0.0f; // NaN
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
mu = (float)( W[ 0 ] / n );
// Compute the variance...
M2 = 0.0f;
M = 0.0f;
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
d = v - mu;
M2 += d * d;
M += d;
n += 1;
}
ix += stride;
}
dM = (double)M;
return (float)((double)M2/nc) - ( (float)(dM/n) * (float)(dM/nc) );
}