/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stdlib/stats/base/snanvariancepn.h" #include /** * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation. * * ## Method * * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`. * * ## References * * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050). * * @private * @param N number of indexed elements * @param W two-element output array * @param X input array * @param stride stride length * @return output value */ static void snansumpw( const int64_t N, double *W, const float *X, const int64_t stride ) { int64_t ix; float *xp1; float *xp2; float sum; int64_t M; int64_t n; int64_t i; float s0; float s1; float s2; float s3; float s4; float s5; float s6; float s7; float v; if ( stride < 0 ) { ix = (1-N) * stride; } else { ix = 0; } if ( N < 8 ) { // Use simple summation... sum = 0.0f; n = 0; for ( i = 0; i < N; i++ ) { v = X[ ix ]; if ( v == v ) { sum += X[ ix ]; n += 1; } ix += stride; } W[ 0 ] += (double)sum; W[ 1 ] += (double)n; return; } // Blocksize for pairwise summation: 128 (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.) if ( N <= 128 ) { // Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)... s0 = 0.0f; s1 = 0.0f; s2 = 0.0f; s3 = 0.0f; s4 = 0.0f; s5 = 0.0f; s6 = 0.0f; s7 = 0.0f; n = 0; M = N % 8; for ( i = 0; i < N-M; i += 8 ) { v = X[ ix ]; if ( v == v ) { s0 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s1 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s2 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s3 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s4 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s5 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s6 += v; n += 1; } ix += stride; v = X[ ix ]; if ( v == v ) { s7 += v; n += 1; } ix += stride; } // Pairwise sum the accumulators: sum = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7)); // Clean-up loop... for (; i < N; i++ ) { v = X[ ix ]; if ( v == v ) { sum += X[ ix ]; n += 1; } ix += stride; } W[ 0 ] += (double)sum; W[ 1 ] += (double)n; return; } // Recurse by dividing by two, but avoiding non-multiples of unroll factor... n = N / 2; n -= n % 8; if ( stride < 0 ) { xp1 = (float *)X + ( (n-N)*stride ); xp2 = (float *)X; } else { xp1 = (float *)X; xp2 = (float *)X + ( n*stride ); } snansumpw( n, W, xp1, stride ); snansumpw( N-n, W, xp2, stride ); } /** * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm. * * ## Method * * - This implementation uses a two-pass approach, as suggested by Neely (1966). * * ## References * * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). * * @param N number of indexed elements * @param correction degrees of freedom adjustment * @param X input array * @param stride stride length * @return output value */ float stdlib_strided_snanvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride ) { double W[] = { 0.0, 0.0 }; int64_t ix; int64_t i; double nc; double dM; double n; float M2; float mu; float M; float d; float v; if ( N <= 0 ) { return 0.0f / 0.0f; // NaN } if ( N == 1 || stride == 0 ) { v = X[ 0 ]; if ( v == v && (double)N-(double)correction > 0.0 ) { return 0.0f; } return 0.0f / 0.0f; // NaN } // Compute an estimate for the mean... snansumpw( N, W, X, stride ); n = W[ 1 ]; nc = n - (double)correction; if ( nc <= 0.0 ) { return 0.0f / 0.0f; // NaN } if ( stride < 0 ) { ix = (1-N) * stride; } else { ix = 0; } mu = (float)( W[ 0 ] / n ); // Compute the variance... M2 = 0.0f; M = 0.0f; for ( i = 0; i < N; i++ ) { v = X[ ix ]; if ( v == v ) { d = v - mu; M2 += d * d; M += d; n += 1; } ix += stride; } dM = (double)M; return (float)((double)M2/nc) - ( (float)(dM/n) * (float)(dM/nc) ); }