time-to-botec/squiggle/node_modules/@stdlib/stats/base/snanvariancepn/src/snanvariancepn.c

244 lines
5.7 KiB
C
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/snanvariancepn.h"
#include <stdint.h>
/**
* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
*
* ## Method
*
* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
*
* ## References
*
* - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 78399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
*
* @private
* @param N number of indexed elements
* @param W two-element output array
* @param X input array
* @param stride stride length
* @return output value
*/
static void snansumpw( const int64_t N, double *W, const float *X, const int64_t stride ) {
int64_t ix;
float *xp1;
float *xp2;
float sum;
int64_t M;
int64_t n;
int64_t i;
float s0;
float s1;
float s2;
float s3;
float s4;
float s5;
float s6;
float s7;
float v;
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
if ( N < 8 ) {
// Use simple summation...
sum = 0.0f;
n = 0;
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
sum += X[ ix ];
n += 1;
}
ix += stride;
}
W[ 0 ] += (double)sum;
W[ 1 ] += (double)n;
return;
}
// Blocksize for pairwise summation: 128 (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.)
if ( N <= 128 ) {
// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
s0 = 0.0f;
s1 = 0.0f;
s2 = 0.0f;
s3 = 0.0f;
s4 = 0.0f;
s5 = 0.0f;
s6 = 0.0f;
s7 = 0.0f;
n = 0;
M = N % 8;
for ( i = 0; i < N-M; i += 8 ) {
v = X[ ix ];
if ( v == v ) {
s0 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s1 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s2 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s3 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s4 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s5 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s6 += v;
n += 1;
}
ix += stride;
v = X[ ix ];
if ( v == v ) {
s7 += v;
n += 1;
}
ix += stride;
}
// Pairwise sum the accumulators:
sum = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
// Clean-up loop...
for (; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
sum += X[ ix ];
n += 1;
}
ix += stride;
}
W[ 0 ] += (double)sum;
W[ 1 ] += (double)n;
return;
}
// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
n = N / 2;
n -= n % 8;
if ( stride < 0 ) {
xp1 = (float *)X + ( (n-N)*stride );
xp2 = (float *)X;
} else {
xp1 = (float *)X;
xp2 = (float *)X + ( n*stride );
}
snansumpw( n, W, xp1, stride );
snansumpw( N-n, W, xp2, stride );
}
/**
* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param stride stride length
* @return output value
*/
float stdlib_strided_snanvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride ) {
double W[] = { 0.0, 0.0 };
int64_t ix;
int64_t i;
double nc;
double dM;
double n;
float M2;
float mu;
float M;
float d;
float v;
if ( N <= 0 ) {
return 0.0f / 0.0f; // NaN
}
if ( N == 1 || stride == 0 ) {
v = X[ 0 ];
if ( v == v && (double)N-(double)correction > 0.0 ) {
return 0.0f;
}
return 0.0f / 0.0f; // NaN
}
// Compute an estimate for the mean...
snansumpw( N, W, X, stride );
n = W[ 1 ];
nc = n - (double)correction;
if ( nc <= 0.0 ) {
return 0.0f / 0.0f; // NaN
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
mu = (float)( W[ 0 ] / n );
// Compute the variance...
M2 = 0.0f;
M = 0.0f;
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
d = v - mu;
M2 += d * d;
M += d;
n += 1;
}
ix += stride;
}
dM = (double)M;
return (float)((double)M2/nc) - ( (float)(dM/n) * (float)(dM/nc) );
}