2022-04-13 17:44:47 +00:00
|
|
|
import * as _ from 'lodash'
|
2022-04-28 01:27:31 +00:00
|
|
|
import { Bet } from './bet'
|
2022-04-09 23:10:58 +00:00
|
|
|
import { Contract } from './contract'
|
2022-04-28 01:27:31 +00:00
|
|
|
import { ClickEvent } from './tracking'
|
2022-04-09 23:10:58 +00:00
|
|
|
import { filterDefined } from './util/array'
|
|
|
|
import { addObjects } from './util/object'
|
|
|
|
|
|
|
|
export const getRecommendedContracts = (
|
|
|
|
contractsById: { [contractId: string]: Contract },
|
|
|
|
yourBetOnContractIds: string[]
|
|
|
|
) => {
|
|
|
|
const contracts = Object.values(contractsById)
|
|
|
|
const yourContracts = filterDefined(
|
|
|
|
yourBetOnContractIds.map((contractId) => contractsById[contractId])
|
|
|
|
)
|
|
|
|
|
|
|
|
const yourContractIds = new Set(yourContracts.map((c) => c.id))
|
|
|
|
const notYourContracts = contracts.filter((c) => !yourContractIds.has(c.id))
|
|
|
|
|
|
|
|
const yourWordFrequency = contractsToWordFrequency(yourContracts)
|
|
|
|
const otherWordFrequency = contractsToWordFrequency(notYourContracts)
|
|
|
|
const words = _.union(
|
|
|
|
Object.keys(yourWordFrequency),
|
|
|
|
Object.keys(otherWordFrequency)
|
|
|
|
)
|
|
|
|
|
|
|
|
const yourWeightedFrequency = _.fromPairs(
|
|
|
|
_.map(words, (word) => {
|
|
|
|
const [yourFreq, otherFreq] = [
|
|
|
|
yourWordFrequency[word] ?? 0,
|
|
|
|
otherWordFrequency[word] ?? 0,
|
|
|
|
]
|
|
|
|
|
|
|
|
const score = yourFreq / (yourFreq + otherFreq + 0.0001)
|
|
|
|
|
|
|
|
return [word, score]
|
|
|
|
})
|
|
|
|
)
|
|
|
|
|
|
|
|
// console.log(
|
|
|
|
// 'your weighted frequency',
|
|
|
|
// _.sortBy(_.toPairs(yourWeightedFrequency), ([, freq]) => -freq)
|
|
|
|
// )
|
|
|
|
|
|
|
|
const scoredContracts = contracts.map((contract) => {
|
|
|
|
const wordFrequency = contractToWordFrequency(contract)
|
|
|
|
|
|
|
|
const score = _.sumBy(Object.keys(wordFrequency), (word) => {
|
|
|
|
const wordFreq = wordFrequency[word] ?? 0
|
|
|
|
const weight = yourWeightedFrequency[word] ?? 0
|
|
|
|
return wordFreq * weight
|
|
|
|
})
|
|
|
|
|
|
|
|
return {
|
|
|
|
contract,
|
|
|
|
score,
|
|
|
|
}
|
|
|
|
})
|
|
|
|
|
|
|
|
return _.sortBy(scoredContracts, (scored) => -scored.score).map(
|
|
|
|
(scored) => scored.contract
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
const contractToText = (contract: Contract) => {
|
|
|
|
const { description, question, tags, creatorUsername } = contract
|
|
|
|
return `${creatorUsername} ${question} ${tags.join(' ')} ${description}`
|
|
|
|
}
|
|
|
|
|
|
|
|
const getWordsCount = (text: string) => {
|
|
|
|
const normalizedText = text.replace(/[^a-zA-Z]/g, ' ').toLowerCase()
|
|
|
|
const words = normalizedText.split(' ').filter((word) => word)
|
|
|
|
|
|
|
|
const counts: { [word: string]: number } = {}
|
|
|
|
for (const word of words) {
|
|
|
|
if (counts[word]) counts[word]++
|
|
|
|
else counts[word] = 1
|
|
|
|
}
|
|
|
|
return counts
|
|
|
|
}
|
|
|
|
|
|
|
|
const toFrequency = (counts: { [word: string]: number }) => {
|
|
|
|
const total = _.sum(Object.values(counts))
|
|
|
|
return _.mapValues(counts, (count) => count / total)
|
|
|
|
}
|
|
|
|
|
|
|
|
const contractToWordFrequency = (contract: Contract) =>
|
|
|
|
toFrequency(getWordsCount(contractToText(contract)))
|
|
|
|
|
|
|
|
const contractsToWordFrequency = (contracts: Contract[]) => {
|
|
|
|
const frequencySum = contracts
|
|
|
|
.map(contractToWordFrequency)
|
|
|
|
.reduce(addObjects, {})
|
|
|
|
|
|
|
|
return toFrequency(frequencySum)
|
|
|
|
}
|
2022-04-28 01:27:31 +00:00
|
|
|
|
|
|
|
export const getWordScores = (
|
|
|
|
contracts: Contract[],
|
|
|
|
contractViewCounts: { [contractId: string]: number },
|
|
|
|
clicks: ClickEvent[],
|
|
|
|
bets: Bet[]
|
|
|
|
) => {
|
|
|
|
const contractClicks = _.groupBy(clicks, (click) => click.contractId)
|
|
|
|
const contractBets = _.groupBy(bets, (bet) => bet.contractId)
|
|
|
|
|
|
|
|
const yourContracts = contracts.filter(
|
|
|
|
(c) =>
|
|
|
|
contractViewCounts[c.id] || contractClicks[c.id] || contractBets[c.id]
|
|
|
|
)
|
|
|
|
const yourTfIdf = calculateContractTfIdf(yourContracts)
|
|
|
|
|
|
|
|
const contractWordScores = _.mapValues(
|
|
|
|
yourTfIdf,
|
|
|
|
(wordsTfIdf, contractId) => {
|
|
|
|
const viewCount = contractViewCounts[contractId] ?? 0
|
|
|
|
const clickCount = contractClicks[contractId]?.length ?? 0
|
|
|
|
const betCount = contractBets[contractId]?.length ?? 0
|
|
|
|
|
|
|
|
const factor =
|
|
|
|
-1 * Math.log(viewCount + 1) +
|
2022-04-30 15:34:53 +00:00
|
|
|
10 * Math.log(betCount + clickCount / 4 + 1)
|
2022-04-28 01:27:31 +00:00
|
|
|
|
|
|
|
return _.mapValues(wordsTfIdf, (tfIdf) => tfIdf * factor)
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
const wordScores = Object.values(contractWordScores).reduce(addObjects, {})
|
2022-04-30 15:34:53 +00:00
|
|
|
const minScore = Math.min(...Object.values(wordScores))
|
|
|
|
const maxScore = Math.max(...Object.values(wordScores))
|
|
|
|
const normalizedWordScores = _.mapValues(
|
|
|
|
wordScores,
|
|
|
|
(score) => (score - minScore) / (maxScore - minScore)
|
2022-04-28 01:27:31 +00:00
|
|
|
)
|
|
|
|
|
2022-04-30 15:34:53 +00:00
|
|
|
// console.log(
|
|
|
|
// 'your word scores',
|
|
|
|
// _.sortBy(_.toPairs(normalizedWordScores), ([, score]) => -score).slice(0, 100),
|
|
|
|
// _.sortBy(_.toPairs(normalizedWordScores), ([, score]) => -score).slice(-100)
|
|
|
|
// )
|
|
|
|
|
|
|
|
return normalizedWordScores
|
2022-04-28 01:27:31 +00:00
|
|
|
}
|
|
|
|
|
2022-04-30 15:54:44 +00:00
|
|
|
export function getContractScore(
|
|
|
|
contract: Contract,
|
2022-04-28 01:27:31 +00:00
|
|
|
wordScores: { [word: string]: number }
|
|
|
|
) {
|
2022-04-30 15:54:44 +00:00
|
|
|
const wordFrequency = contractToWordFrequency(contract)
|
|
|
|
const score = _.sumBy(Object.keys(wordFrequency), (word) => {
|
|
|
|
const wordFreq = wordFrequency[word] ?? 0
|
|
|
|
const weight = wordScores[word] ?? 0
|
|
|
|
return wordFreq * weight
|
2022-04-28 01:27:31 +00:00
|
|
|
})
|
|
|
|
|
2022-04-30 15:54:44 +00:00
|
|
|
return score
|
2022-04-28 01:27:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Caluculate Term Frequency-Inverse Document Frequency (TF-IDF):
|
|
|
|
// https://medium.datadriveninvestor.com/tf-idf-in-natural-language-processing-8db8ef4a7736
|
|
|
|
function calculateContractTfIdf(contracts: Contract[]) {
|
|
|
|
const contractFreq = contracts.map((c) => contractToWordFrequency(c))
|
|
|
|
const contractWords = contractFreq.map((freq) => Object.keys(freq))
|
|
|
|
|
|
|
|
const wordsCount: { [word: string]: number } = {}
|
|
|
|
for (const words of contractWords) {
|
|
|
|
for (const word of words) {
|
|
|
|
wordsCount[word] = (wordsCount[word] ?? 0) + 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const wordIdf = _.mapValues(wordsCount, (count) =>
|
|
|
|
Math.log(contracts.length / count)
|
|
|
|
)
|
|
|
|
const contractWordsTfIdf = _.map(contractFreq, (wordFreq) =>
|
|
|
|
_.mapValues(wordFreq, (freq, word) => freq * wordIdf[word])
|
|
|
|
)
|
|
|
|
return _.fromPairs(contracts.map((c, i) => [c.id, contractWordsTfIdf[i]]))
|
|
|
|
}
|