import * as _ from 'lodash' import { Bet } from './bet' import { Contract } from './contract' import { ClickEvent } from './tracking' import { filterDefined } from './util/array' import { addObjects } from './util/object' export const getRecommendedContracts = ( contractsById: { [contractId: string]: Contract }, yourBetOnContractIds: string[] ) => { const contracts = Object.values(contractsById) const yourContracts = filterDefined( yourBetOnContractIds.map((contractId) => contractsById[contractId]) ) const yourContractIds = new Set(yourContracts.map((c) => c.id)) const notYourContracts = contracts.filter((c) => !yourContractIds.has(c.id)) const yourWordFrequency = contractsToWordFrequency(yourContracts) const otherWordFrequency = contractsToWordFrequency(notYourContracts) const words = _.union( Object.keys(yourWordFrequency), Object.keys(otherWordFrequency) ) const yourWeightedFrequency = _.fromPairs( _.map(words, (word) => { const [yourFreq, otherFreq] = [ yourWordFrequency[word] ?? 0, otherWordFrequency[word] ?? 0, ] const score = yourFreq / (yourFreq + otherFreq + 0.0001) return [word, score] }) ) // console.log( // 'your weighted frequency', // _.sortBy(_.toPairs(yourWeightedFrequency), ([, freq]) => -freq) // ) const scoredContracts = contracts.map((contract) => { const wordFrequency = contractToWordFrequency(contract) const score = _.sumBy(Object.keys(wordFrequency), (word) => { const wordFreq = wordFrequency[word] ?? 0 const weight = yourWeightedFrequency[word] ?? 0 return wordFreq * weight }) return { contract, score, } }) return _.sortBy(scoredContracts, (scored) => -scored.score).map( (scored) => scored.contract ) } const contractToText = (contract: Contract) => { const { description, question, tags, creatorUsername } = contract return `${creatorUsername} ${question} ${tags.join(' ')} ${description}` } const getWordsCount = (text: string) => { const normalizedText = text.replace(/[^a-zA-Z]/g, ' ').toLowerCase() const words = normalizedText.split(' ').filter((word) => word) const counts: { [word: string]: number } = {} for (const word of words) { if (counts[word]) counts[word]++ else counts[word] = 1 } return counts } const toFrequency = (counts: { [word: string]: number }) => { const total = _.sum(Object.values(counts)) return _.mapValues(counts, (count) => count / total) } const contractToWordFrequency = (contract: Contract) => toFrequency(getWordsCount(contractToText(contract))) const contractsToWordFrequency = (contracts: Contract[]) => { const frequencySum = contracts .map(contractToWordFrequency) .reduce(addObjects, {}) return toFrequency(frequencySum) } export const getWordScores = ( contracts: Contract[], contractViewCounts: { [contractId: string]: number }, clicks: ClickEvent[], bets: Bet[] ) => { const contractClicks = _.groupBy(clicks, (click) => click.contractId) const contractBets = _.groupBy(bets, (bet) => bet.contractId) const yourContracts = contracts.filter( (c) => contractViewCounts[c.id] || contractClicks[c.id] || contractBets[c.id] ) const yourTfIdf = calculateContractTfIdf(yourContracts) const contractWordScores = _.mapValues( yourTfIdf, (wordsTfIdf, contractId) => { const viewCount = contractViewCounts[contractId] ?? 0 const clickCount = contractClicks[contractId]?.length ?? 0 const betCount = contractBets[contractId]?.length ?? 0 const factor = -1 * Math.log(viewCount + 1) + 10 * Math.log(betCount + clickCount / 4 + 1) return _.mapValues(wordsTfIdf, (tfIdf) => tfIdf * factor) } ) const wordScores = Object.values(contractWordScores).reduce(addObjects, {}) const minScore = Math.min(...Object.values(wordScores)) const maxScore = Math.max(...Object.values(wordScores)) const normalizedWordScores = _.mapValues( wordScores, (score) => (score - minScore) / (maxScore - minScore) ) // console.log( // 'your word scores', // _.sortBy(_.toPairs(normalizedWordScores), ([, score]) => -score).slice(0, 100), // _.sortBy(_.toPairs(normalizedWordScores), ([, score]) => -score).slice(-100) // ) return normalizedWordScores } export function getContractScore( contract: Contract, wordScores: { [word: string]: number } ) { const wordFrequency = contractToWordFrequency(contract) const score = _.sumBy(Object.keys(wordFrequency), (word) => { const wordFreq = wordFrequency[word] ?? 0 const weight = wordScores[word] ?? 0 return wordFreq * weight }) return score } // Caluculate Term Frequency-Inverse Document Frequency (TF-IDF): // https://medium.datadriveninvestor.com/tf-idf-in-natural-language-processing-8db8ef4a7736 function calculateContractTfIdf(contracts: Contract[]) { const contractFreq = contracts.map((c) => contractToWordFrequency(c)) const contractWords = contractFreq.map((freq) => Object.keys(freq)) const wordsCount: { [word: string]: number } = {} for (const words of contractWords) { for (const word of words) { wordsCount[word] = (wordsCount[word] ?? 0) + 1 } } const wordIdf = _.mapValues(wordsCount, (count) => Math.log(contracts.length / count) ) const contractWordsTfIdf = _.map(contractFreq, (wordFreq) => _.mapValues(wordFreq, (freq, word) => freq * wordIdf[word]) ) return _.fromPairs(contracts.map((c, i) => [c.id, contractWordsTfIdf[i]])) }