manifold/common/calculate-swap3.ts

226 lines
6.4 KiB
TypeScript
Raw Normal View History

type Swap3LiquidityPosition = {
2022-06-07 15:37:00 +00:00
// TODO: Record who added this stuff?
// Not sure if this is needed; maybe YES and NO left
// amount: number // M$ quantity
// For now, only support YES and NO outcome tokens
// TODO: replace with Outcome
// Hm, is this...
// 1. Number of shares left in this particular pool?
// 2. Fixed at injection time?
pool: { YES: number; NO: number }
// Uniswap uses 0.01, 0.003, 0.0005. Let's stick with 0.003 for now.
// fee: number
// Min/max is expressed as a odds ratio of cost of YES to cost of NO
// E.g. ratio of 1 = 1:1 = 50%; ratio of 3 = 3:1 = 75%
// minRatio: number
// maxRatio: number
minTick: number
// minTick = loq_sqrt_1.0001(sqrtRatio)
// sqrt(1.0001)^(minTick) = sqrtRatio
// minRatio = 1.0001^minTick
// e.g. minTick = 20k => 7.3883
maxTick: number
}
type TickState = {
tick: number
// Amount of liquidity added when crossing this tick from left to right
// Negative if we should remove liquidity
liquidityNet: number
// Total liquidity referencing this pool
liquidityGross: number
}
2022-06-07 15:37:00 +00:00
// From https://uniswap.org/whitepaper-v3.pdf
export type Swap3Pool = {
// id: string
// userId: string
// contractId: string
// createdTime: number
// 6.2 Global State
liquidity: number // = sqrt(NY)
// sqrtRatio: number // = sqrt(N / Y); N = # NO shares in pool
2022-06-07 15:37:00 +00:00
// So N = liquidity * sqrtRatio; Y = liquidity / sqrtRatio
// Current tick number.
2022-06-07 15:37:00 +00:00
// Stored as optimization. equal to floor(log_sqrt_1.0001(sqrtRatio))
tick: number
2022-06-07 15:37:00 +00:00
// TODO add fees?
// Mapping of tick indices to tick values.
tickStates: TickState[]
}
export function noShares(pool: Swap3Pool) {
return pool.liquidity * toRatio(pool.tick) ** 0.5
}
export function yesShares(pool: Swap3Pool) {
return pool.liquidity / toRatio(pool.tick) ** 0.5
2022-06-07 15:37:00 +00:00
}
export function getSwap3Probability(pool: Swap3Pool) {
// Probability is given by N / (N + Y)
// const N = pool.liquidity * pool.sqrtRatio
// const Y = pool.liquidity / pool.sqrtRatio
// return N / (N + Y)
// To check: this should be equal to toProb(pool.tick)?
return toProb(pool.tick)
}
function calculatePurchase(
pool: Swap3Pool,
2022-06-08 17:36:35 +00:00
amount: number, // In M$
2022-06-07 15:37:00 +00:00
outcome: 'YES' | 'NO'
2022-06-08 17:36:35 +00:00
) {}
2022-06-07 15:37:00 +00:00
export function calculateLPCost(
curTick: number,
minTick: number,
maxTick: number,
deltaL: number
) {
// TODO: this is subtly wrong, because of rounding between curTick and sqrtPrice
2022-06-09 02:56:59 +00:00
// Also below in buyYES
2022-06-07 15:37:00 +00:00
const upperTick = Math.min(maxTick, Math.max(minTick, curTick))
const costN = toRatio(upperTick) ** 0.5 - toRatio(minTick) ** 0.5
const lowerTick = Math.max(minTick, Math.min(maxTick, curTick))
const costY = 1 / toRatio(lowerTick) ** 0.5 - 1 / toRatio(maxTick) ** 0.5
return {
requiredN: deltaL * costN,
requiredY: deltaL * costY,
}
}
2022-06-09 02:56:59 +00:00
// Returns a preview of the new pool + number of YES shares purchased.
// Does NOT modify the pool
// Hm, logic is pretty complicated. Let's see if we can simplify this.
export function buyYes(
pool: Swap3Pool,
amount: number // In M$
) {
const tickStates = sortedTickStates(pool)
let tick = pool.tick
let stateIndex = 0
let amountLeft = amount
let yesPurchased = 0
2022-06-09 03:19:26 +00:00
// Stop if there's epsilon M$ left, due to rounding issues
while (amountLeft > 1e-6) {
// Find the current & next states for this tick
2022-06-09 02:56:59 +00:00
while (tick >= tickStates[stateIndex + 1].tick) {
stateIndex++
if (stateIndex > tickStates.length - 2) {
// We've reached the end of the tick states...
throw new Error('Ran out of tick states')
}
}
const state = tickStates[stateIndex]
const nextState = tickStates[stateIndex + 1]
2022-06-09 03:19:26 +00:00
// nextState.tick purchases through the bucket; fullTick uses the remaining amountLeft
const fullCostN = amountLeft / state.liquidityGross
// Note: fullTick is NOT floored here; it's for the sqrtPrice to buy up to
const fullTick = fromRatioUnfloored((fullCostN + toRatio(tick) ** 0.5) ** 2)
const nextTick = Math.min(nextState.tick, fullTick)
// Copied from above; TODO extract to common function?
const noCost = toRatio(nextTick) ** 0.5 - toRatio(tick) ** 0.5
const yesCost = 1 / toRatio(tick) ** 0.5 - 1 / toRatio(nextTick) ** 0.5
amountLeft -= noCost * state.liquidityGross
yesPurchased += yesCost * state.liquidityGross
tick = Math.floor(nextTick)
2022-06-09 02:56:59 +00:00
}
2022-06-09 03:19:26 +00:00
// Right now we eat the epsilon amounntLeft as a fee. Could return it, shrug.
2022-06-09 02:56:59 +00:00
return {
newPoolTick: tick,
yesPurchased,
}
}
2022-06-08 15:45:09 +00:00
// Currently, this mutates the pool. Should it return a new object instead?
export function addPosition(
pool: Swap3Pool,
minTick: number,
maxTick: number,
deltaL: number
) {
const { requiredN, requiredY } = calculateLPCost(
pool.tick,
minTick,
maxTick,
deltaL
)
console.log(`Deducting required N: ${requiredN} and required Y: ${requiredY}`)
2022-06-08 15:45:09 +00:00
// Add liquidity as we pass through the smaller tick
const minTickState = pool.tickStates[minTick] || {
tick: minTick,
liquidityNet: 0,
liquidityGross: 0,
}
2022-06-08 15:45:09 +00:00
minTickState.liquidityNet += deltaL
pool.tickStates[minTick] = minTickState
2022-06-08 15:45:09 +00:00
// And remove it as we pass through the larger one
const maxTickState = pool.tickStates[maxTick] || {
tick: maxTick,
liquidityNet: 0,
liquidityGross: 0,
}
2022-06-08 15:45:09 +00:00
maxTickState.liquidityNet -= deltaL
pool.tickStates[maxTick] = maxTickState
2022-06-08 17:36:35 +00:00
return pool
}
2022-06-08 15:45:09 +00:00
2022-06-08 17:36:35 +00:00
// This also mutates the pool directly
export function grossLiquidity(pool: Swap3Pool) {
let liquidityGross = 0
for (const tickState of sortedTickStates(pool)) {
liquidityGross += tickState.liquidityNet
tickState.liquidityGross = liquidityGross
}
2022-06-08 15:45:09 +00:00
return pool
}
export function sortedTickStates(pool: Swap3Pool) {
return Object.values(pool.tickStates).sort((a, b) => a.tick - b.tick)
}
2022-06-07 15:37:00 +00:00
function toRatio(tick: number) {
return 1.0001 ** tick
}
2022-06-08 15:45:09 +00:00
export function toProb(tick: number) {
2022-06-07 15:37:00 +00:00
const ratio = toRatio(tick)
return ratio / (ratio + 1)
}
// Returns the tick for a given probability from 0 to 1
2022-06-07 15:37:00 +00:00
export function fromProb(prob: number) {
const ratio = prob / (1 - prob)
2022-06-09 02:56:59 +00:00
return fromRatio(ratio)
}
function fromRatio(ratio: number) {
2022-06-07 15:54:17 +00:00
return Math.floor(Math.log(ratio) / Math.log(1.0001))
2022-06-07 15:37:00 +00:00
}
2022-06-09 03:19:26 +00:00
function fromRatioUnfloored(ratio: number) {
return Math.log(ratio) / Math.log(1.0001)
}