3.2 KiB
3.2 KiB
sidebar_position | title |
---|---|
1 | Distribution Creation |
Normal Distribution
Definitions
normal(frValueDistOrNumber, frValueDistOrNumber)
normal(dict<{p5: frValueDistOrNumber, p95: frValueDistOrNumber}>)
normal(dict<{mean: frValueDistOrNumber, stdev: frValueDistOrNumber}>)
Examples
normal(5,1)
normal({p5: 4, p95: 10})
normal({mean: 5, stdev: 2})
Lognormal Distribution
Definitions
lognormal(frValueDistOrNumber, frValueDistOrNumber)
lognormal(dict<{p5: frValueDistOrNumber, p95: frValueDistOrNumber}>)
lognormal(dict<{mean: frValueDistOrNumber, stdev: frValueDistOrNumber}>)
Examples
lognormal(0.5, 0.8)
lognormal({p5: 4, p95: 10})
lognormal({mean: 5, stdev: 2})
Uniform Distribution
Definitions
uniform(frValueDistOrNumber, frValueDistOrNumber)
Examples
uniform(10, 12)
Beta Distribution
Definitions
beta(frValueDistOrNumber, frValueDistOrNumber)
Examples
beta(20, 25)
Cauchy Distribution
Definitions
cauchy(frValueDistOrNumber, frValueDistOrNumber)
Examples
cauchy(5, 1)
Gamma Distribution
Definitions
gamma(frValueDistOrNumber, frValueDistOrNumber)
Examples
gamma(5, 1)
Logistic Distribution
Definitions
logistic(frValueDistOrNumber, frValueDistOrNumber)
Examples
gamma(5, 1)
To (Distribution)
Definitions
to(frValueDistOrNumber, frValueDistOrNumber)
credibleIntervalToDistribution(frValueDistOrNumber, frValueDistOrNumber)
Examples
5 to 10
to(5,10)
-5 to 5
Exponential
Definitions
exponential(frValueDistOrNumber)
Examples
exponential(2)
Bernoulli
Definitions
bernoulli(frValueDistOrNumber)
Examples
bernoulli(0.5)
toContinuousPointSet
Converts a set of points to a continuous distribution
Definitions
toContinuousPointSet(array<dict<{x: numeric, y: numeric}>>)
Examples
toContinuousPointSet([
{x: 0, y: 0.1},
{x: 1, y: 0.2},
{x: 2, y: 0.15},
{x:3, y: 0.1}
])
toDiscretePointSet
Converts a set of points to a discrete distribution
Definitions
toDiscretePointSet(array<dict<{x: numeric, y: numeric}>>)
Examples
toDiscretePointSet([
{x: 0, y: 0.1},
{x: 1, y: 0.2},
{x: 2, y: 0.15},
{x:3, y: 0.1}
])
Declaration (Continuous Function)
Adds metadata to a function of the input ranges. Works now for numeric and date inputs. This is useful when making predictions. It allows you to limit the domain that your prediction will be used and scored within.
Definitions
declareFn(dict<{fn: lambda, inputs: array<dict<{min: number, max: number}>>}>)
Examples
declareFn({
fn: {|a,b| a },
inputs: [
{min: 0, max: 100},
{min: 30, max: 50}
]
})