146 lines
5.2 KiB
Plaintext
146 lines
5.2 KiB
Plaintext
|
open Jest
|
||
|
open Expect
|
||
|
|
||
|
let pdfImage = (thePdf, inps) => Js.Array.map(thePdf, inps)
|
||
|
|
||
|
let env: DistributionOperation.env = {
|
||
|
sampleCount: 100,
|
||
|
xyPointLength: 100,
|
||
|
}
|
||
|
|
||
|
let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev}))
|
||
|
let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Output)
|
||
|
let {run} = module(DistributionOperation)
|
||
|
let run = run(~env)
|
||
|
let outputMap = fmap(~env)
|
||
|
let toExtFloat: option<float> => float = E.O.toExt(
|
||
|
"Should be impossible to reach (This error is in test file)",
|
||
|
)
|
||
|
let toExtDist: option<GenericDist_Types.genericDist> => GenericDist_Types.genericDist = E.O.toExt(
|
||
|
"Should be impossible to reach (This error is in a test file)",
|
||
|
)
|
||
|
let unpackFloat = x => x -> toFloat -> toExtFloat
|
||
|
let unpackDist = y => y -> toDist -> toExtDist
|
||
|
|
||
|
describe("normalize", () => {
|
||
|
testAll("has no impact on normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
|
||
|
let theNormal = mkNormal(mean, 2.0)
|
||
|
let theNormalized = run(FromDist(ToDist(Normalize), theNormal))
|
||
|
theNormalized
|
||
|
-> unpackDist
|
||
|
-> expect
|
||
|
-> toEqual(theNormal)
|
||
|
})
|
||
|
})
|
||
|
|
||
|
describe("mean", () => {
|
||
|
testAll("of normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
|
||
|
run(FromDist(ToFloat(#Mean), mkNormal(mean, 4.0)))
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo(mean)
|
||
|
})
|
||
|
|
||
|
testAll("of exponential distributions", list{1e-7, 2.0, 10.0, 100.0}, rate => {
|
||
|
let theMean = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))))
|
||
|
theMean -> unpackFloat -> expect -> toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
|
||
|
})
|
||
|
|
||
|
// test("of a cauchy distribution", () => {
|
||
|
// let result = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))))
|
||
|
// expect(result) -> toEqual(Error("Cauchy distributions may have no mean value."))
|
||
|
// })
|
||
|
|
||
|
test("of a triangular distribution", () => { // should be property
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Triangular({low: - 5.0, medium: 1e-3, high: 10.0}))
|
||
|
))
|
||
|
theMean
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo((-5.0 +. 1e-3 +. 10.0) /. 3.0) // https://www.statology.org/triangular-distribution/
|
||
|
})
|
||
|
|
||
|
test("of a beta distribution with alpha much smaller than beta", () => { // should be property
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Beta({alpha: 2e-4, beta: 64.0}))
|
||
|
))
|
||
|
theMean
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo(1.0 /. (1.0 +. (64.0 /. 2e-4))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
|
||
|
})
|
||
|
|
||
|
test("of a beta distribution with alpha much larger than beta", () => { // should be property
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Beta({alpha: 128.0, beta: 1.0}))
|
||
|
))
|
||
|
theMean
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo(1.0 /. (1.0 +. (1.0 /. 128.0))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
|
||
|
})
|
||
|
|
||
|
test("of a lognormal", () => { // should be property
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Lognormal({mu: 2.0, sigma: 4.0}))
|
||
|
))
|
||
|
theMean
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo(Js.Math.exp(2.0 +. 4.0 ** 2.0 /. 2.0 )) // https://brilliant.org/wiki/log-normal-distribution/
|
||
|
})
|
||
|
|
||
|
test("of a uniform", () => {
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Uniform({low: 1e-5, high: 12.345}))
|
||
|
))
|
||
|
theMean
|
||
|
-> unpackFloat
|
||
|
-> expect
|
||
|
-> toBeCloseTo((1e-5 +. 12.345) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
|
||
|
})
|
||
|
|
||
|
test("of a float", () => {
|
||
|
let theMean = run(FromDist(
|
||
|
ToFloat(#Mean),
|
||
|
GenericDist_Types.Symbolic(#Float(7.7))
|
||
|
))
|
||
|
theMean -> unpackFloat -> expect -> toBeCloseTo(7.7)
|
||
|
})
|
||
|
})
|
||
|
|
||
|
describe("Normal distribution with sparklines", () => {
|
||
|
|
||
|
let parameterWiseAdditionHelper = (n1: SymbolicDistTypes.normal, n2: SymbolicDistTypes.normal) => {
|
||
|
let normalDistAtSumMeanConstr = SymbolicDist.Normal.add(n1, n2)
|
||
|
let normalDistAtSumMean: SymbolicDistTypes.normal = switch normalDistAtSumMeanConstr {
|
||
|
| #Normal(params) => params
|
||
|
}
|
||
|
x => SymbolicDist.Normal.pdf(x, normalDistAtSumMean)
|
||
|
}
|
||
|
|
||
|
let normalDistAtMean5: SymbolicDistTypes.normal = {mean: 5.0, stdev: 2.0}
|
||
|
let normalDistAtMean10: SymbolicDistTypes.normal = {mean: 10.0, stdev: 2.0}
|
||
|
let range20Float = E.A.rangeFloat(0, 20) // [0.0,1.0,2.0,3.0,4.0,...19.0,]
|
||
|
|
||
|
let pdfNormalDistAtMean5 = x => SymbolicDist.Normal.pdf(x, normalDistAtMean5)
|
||
|
let sparklineMean5 = pdfImage(pdfNormalDistAtMean5, range20Float)
|
||
|
test("mean=5", () => {
|
||
|
Sparklines.create(sparklineMean5, ())
|
||
|
-> expect
|
||
|
-> toEqual(`▁▂▃▅███▅▃▂▁▁▁▁▁▁▁▁▁▁▁`)
|
||
|
})
|
||
|
let sparklineMean15 = normalDistAtMean5 -> parameterWiseAdditionHelper(normalDistAtMean10) -> pdfImage(range20Float)
|
||
|
test("parameter-wise addition of two normal distributions", () => {
|
||
|
Sparklines.create(sparklineMean15, ())
|
||
|
-> expect
|
||
|
-> toEqual(`▁▁▁▁▁▁▁▁▁▁▂▃▅▇███▇▅▃▂`)
|
||
|
})
|
||
|
})
|