2022-03-25 02:08:46 +00:00
---
2022-06-14 21:37:59 +00:00
title: "Distribution Functions"
2022-05-10 19:23:04 +00:00
sidebar_position: 3
2022-03-25 02:08:46 +00:00
---
2022-04-11 00:13:11 +00:00
import { SquiggleEditor } from "../../src/components/SquiggleEditor";
2022-03-25 02:08:46 +00:00
2022-04-20 17:41:22 +00:00
## Operating on distributions
2022-04-20 15:55:56 +00:00
2022-04-20 16:09:57 +00:00
Here are the ways we combine distributions.
2022-04-20 15:55:56 +00:00
2022-04-20 18:55:14 +00:00
### Addition
2022-05-03 21:22:08 +00:00
A horizontal right shift. The addition operation represents the distribution of the sum of
the value of one random sample chosen from the first distribution and the value one random sample
chosen from the second distribution.
2022-03-25 02:08:46 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 + dist2`}
/>
2022-03-25 02:08:46 +00:00
2022-04-20 18:55:14 +00:00
### Subtraction
2022-05-03 21:22:08 +00:00
A horizontal left shift. A horizontal right shift. The substraction operation represents
the distribution of the value of one random sample chosen from the first distribution minus
the value of one random sample chosen from the second distribution.
2022-03-25 02:08:46 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 - dist2`}
/>
2022-03-25 02:08:46 +00:00
2022-04-20 18:55:14 +00:00
### Multiplication
2022-05-03 21:22:08 +00:00
A proportional scaling. The addition operation represents the distribution of the multiplication of
the value of one random sample chosen from the first distribution times the value one random sample
chosen from the second distribution.
2022-04-20 15:55:56 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 * dist2`}
/>
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
We also provide concatenation of two distributions as a syntax sugar for `*`
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="(0.1 to 1) triangular(1,2,3)" />
2022-04-20 17:41:22 +00:00
2022-04-20 18:55:14 +00:00
### Division
2022-05-03 21:22:08 +00:00
A proportional scaling (normally a shrinking if the second distribution has values higher than 1).
The addition operation represents the distribution of the division of
the value of one random sample chosen from the first distribution over the value one random sample
chosen from the second distribution. If the second distribution has some values near zero, it
tends to be particularly unstable.
2022-04-20 15:55:56 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 / dist2`}
/>
2022-04-20 15:55:56 +00:00
2022-04-20 18:55:14 +00:00
### Exponentiation
2022-05-03 21:22:08 +00:00
A projection over a contracted x-axis. The exponentiation operation represents the distribution of
the exponentiation of the value of one random sample chosen from the first distribution to the power of
the value one random sample chosen from the second distribution.
2022-04-20 17:41:22 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString={`(0.1 to 1) ^ beta(2, 3)`} />
2022-04-20 17:41:22 +00:00
### Taking the base `e` exponential
2022-04-20 15:55:56 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist = triangular(1,2,3)
2022-04-20 20:50:43 +00:00
exp(dist)`}
/>
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
### Taking logarithms
2022-04-20 15:55:56 +00:00
2022-05-03 21:22:08 +00:00
A projection over a stretched x-axis.
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist = triangular(1,2,3)
2022-04-20 20:50:43 +00:00
log(dist)`}
/>
2022-04-20 15:55:56 +00:00
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist = beta(1,2)
2022-04-20 20:50:43 +00:00
log10(dist)`}
/>
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
Base `x`
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`x = 2
2022-04-20 20:50:43 +00:00
dist = beta(2,3)
log(dist, x)`}
/>
2022-04-20 18:55:14 +00:00
2022-04-20 17:41:22 +00:00
#### Validity
2022-04-20 16:09:57 +00:00
2022-04-20 17:41:22 +00:00
- `x` must be a scalar
2022-04-20 15:55:56 +00:00
- See [the current discourse](https://github.com/quantified-uncertainty/squiggle/issues/304)
2022-04-20 17:41:22 +00:00
### Pointwise addition
2022-05-03 21:22:08 +00:00
For every point on the x-axis, operate the corresponding points in the y axis of the pdf.
2022-04-20 17:41:22 +00:00
**Pointwise operations are done with `PointSetDist` internals rather than `SampleSetDist` internals**.
TODO: this isn't in the new interpreter/parser yet.
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 .+ dist2`}
/>
2022-04-20 17:41:22 +00:00
### Pointwise subtraction
TODO: this isn't in the new interpreter/parser yet.
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 .- dist2`}
/>
2022-04-20 17:41:22 +00:00
### Pointwise multiplication
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 .* dist2`}
/>
2022-04-20 17:41:22 +00:00
### Pointwise division
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = uniform(0,20)
2022-04-30 18:34:00 +00:00
dist2 = normal(10,8)
2022-04-20 20:50:43 +00:00
dist1 ./ dist2`}
/>
2022-04-20 17:41:22 +00:00
### Pointwise exponentiation
2022-04-20 20:50:43 +00:00
<SquiggleEditor
2022-06-24 03:43:30 +00:00
squiggleString={`dist1 = 1 to 10
2022-04-20 20:50:43 +00:00
dist2 = triangular(1,2,3)
dist1 .^ dist2`}
/>
2022-04-20 17:41:22 +00:00
## Standard functions on distributions
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
### Probability density function
2022-03-25 02:08:46 +00:00
2022-04-20 15:55:56 +00:00
The `pdf(dist, x)` function returns the density of a distribution at the
given point x.
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="pdf(normal(0,1),0)" />
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
#### Validity
2022-04-20 16:09:57 +00:00
2022-04-20 15:55:56 +00:00
- `x` must be a scalar
- `dist` must be a distribution
2022-03-25 02:08:46 +00:00
2022-04-20 17:41:22 +00:00
### Cumulative density function
2022-04-20 15:55:56 +00:00
The `cdf(dist, x)` gives the cumulative probability of the distribution
2022-06-13 04:19:28 +00:00
or all values lower than x. It is the inverse of `quantile`.
2022-03-25 02:08:46 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="cdf(normal(0,1),0)" />
2022-03-25 02:08:46 +00:00
2022-04-20 17:41:22 +00:00
#### Validity
2022-04-20 16:09:57 +00:00
2022-04-20 15:55:56 +00:00
- `x` must be a scalar
- `dist` must be a distribution
2022-06-13 04:19:28 +00:00
### Quantile
2022-04-20 15:55:56 +00:00
2022-06-13 04:19:28 +00:00
The `quantile(dist, prob)` gives the value x or which the probability for all values
2022-05-03 21:22:08 +00:00
lower than x is equal to prob. It is the inverse of `cdf`. In the literature, it
is also known as the quantiles function.
2022-04-20 15:55:56 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="quantile(normal(0,1),0.5)" />
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
#### Validity
2022-04-20 16:09:57 +00:00
2022-04-20 15:55:56 +00:00
- `prob` must be a scalar (please only put it in `(0,1)`)
- `dist` must be a distribution
2022-04-20 17:41:22 +00:00
### Mean
2022-04-10 23:15:46 +00:00
2022-03-25 12:13:56 +00:00
The `mean(distribution)` function gives the mean (expected value) of a distribution.
2022-03-25 02:08:46 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="mean(normal(5, 10))" />
2022-03-25 02:08:46 +00:00
2022-04-20 17:41:22 +00:00
### Sampling a distribution
2022-04-10 23:15:46 +00:00
2022-03-25 12:13:56 +00:00
The `sample(distribution)` samples a given distribution.
2022-03-25 02:08:46 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="sample(normal(0, 10))" />
2022-04-20 15:55:56 +00:00
2022-04-27 15:50:24 +00:00
## Converting between distribution formats
Recall the [three formats of distributions](https://develop--squiggle-documentation.netlify.app/docs/Discussions/Three-Types-Of-Distributions). We can force any distribution into `SampleSet` format
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="toSampleSet(normal(5, 10))" />
2022-04-27 15:50:24 +00:00
Or `PointSet` format
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="toPointSet(normal(5, 10))" />
2022-04-27 15:50:24 +00:00
2022-04-30 14:01:55 +00:00
### `toSampleSet` has two signatures
Above, we saw the unary `toSampleSet`, which uses an internal hardcoded number of samples. If you'd like to provide the number of samples, it has a binary signature as well (floored)
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="[toSampleSet(0.1 to 1, 100.1), toSampleSet(0.1 to 1, 5000), toSampleSet(0.1 to 1, 20000)]" />
2022-04-30 14:01:55 +00:00
#### Validity
- Second argument to `toSampleSet` must be a number.
2022-04-20 17:41:22 +00:00
## Normalization
2022-04-20 15:55:56 +00:00
2022-04-20 16:09:57 +00:00
Some distribution operations (like horizontal shift) return an unnormalized distriibution.
2022-04-20 15:55:56 +00:00
We provide a `normalize` function
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="normalize((0.1 to 1) + triangular(0.1, 1, 10))" />
2022-04-20 18:55:14 +00:00
2022-04-20 17:41:22 +00:00
#### Validity - Input to `normalize` must be a dist
2022-04-20 15:55:56 +00:00
2022-04-20 16:09:57 +00:00
We provide a predicate `isNormalized`, for when we have simple control flow
2022-04-20 15:55:56 +00:00
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="isNormalized((0.1 to 1) * triangular(0.1, 1, 10))" />
2022-04-20 15:55:56 +00:00
2022-04-20 17:41:22 +00:00
#### Validity
2022-04-20 16:09:57 +00:00
2022-04-20 15:55:56 +00:00
- Input to `isNormalized` must be a dist
2022-04-20 17:41:22 +00:00
## `inspect`
2022-04-20 16:09:57 +00:00
You may like to debug by right clicking your browser and using the _inspect_ functionality on the webpage, and viewing the _console_ tab. Then, wrap your squiggle output with `inspect` to log an internal representation.
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="inspect(toSampleSet(0.1 to 1, 100))" />
2022-04-20 16:09:57 +00:00
Save for a logging side effect, `inspect` does nothing to input and returns it.
2022-04-20 17:41:22 +00:00
## Truncate
2022-04-20 16:09:57 +00:00
You can cut off from the left
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="truncateLeft(0.1 to 1, 0.5)" />
2022-04-20 16:09:57 +00:00
You can cut off from the right
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="truncateRight(0.1 to 1, 0.5)" />
2022-04-20 16:09:57 +00:00
You can cut off from both sides
2022-06-24 03:43:30 +00:00
<SquiggleEditor squiggleString="truncate(0.1 to 1, 0.5, 1.5)" />