removed pull request trigger from codeql analysis
This commit is contained in:
parent
656ad92f40
commit
76a0f254ea
7
.github/workflows/codeql-analysis.yml
vendored
7
.github/workflows/codeql-analysis.yml
vendored
|
@ -18,13 +18,6 @@ on:
|
|||
- production
|
||||
- staging
|
||||
- develop
|
||||
pull_request:
|
||||
# The branches below must be a subset of the branches above
|
||||
branches:
|
||||
- master
|
||||
- production
|
||||
- staging
|
||||
- develop
|
||||
schedule:
|
||||
- cron: "42 19 * * 0"
|
||||
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
{
|
||||
"extends": "@parcel/config-default",
|
||||
"transformers": {
|
||||
"*.res": ["@parcel/transformer-raw"]
|
||||
}
|
||||
}
|
|
@ -1,69 +1,101 @@
|
|||
---
|
||||
title: Functions reference
|
||||
sidebar_position: 7
|
||||
---
|
||||
|
||||
import { SquiggleEditor } from "../../src/components/SquiggleEditor";
|
||||
|
||||
# Squiggle Functions Reference
|
||||
_The source of truth for this document is [this file of code](https://github.com/quantified-uncertainty/squiggle/blob/develop/packages/squiggle-lang/src/rescript/ReducerInterface/ReducerInterface_GenericDistribution.res)_
|
||||
|
||||
## Distributions
|
||||
# Inventory distributions
|
||||
|
||||
### Normal distribution
|
||||
We provide starter distributions, computed symbolically.
|
||||
|
||||
## Normal distribution
|
||||
|
||||
The `normal(mean, sd)` function creates a normal distribution with the given mean
|
||||
and standard deviation.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="normal(5, 1)" />
|
||||
|
||||
### Uniform distribution
|
||||
### Validity
|
||||
- `sd > 0`
|
||||
|
||||
## Uniform distribution
|
||||
|
||||
The `uniform(low, high)` function creates a uniform distribution between the
|
||||
two given numbers.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="uniform(3, 7)" />
|
||||
|
||||
### Lognormal distribution
|
||||
### Validity
|
||||
- `low < high`
|
||||
|
||||
## Lognormal distribution
|
||||
|
||||
The `lognormal(mu, sigma)` returns the log of a normal distribution with parameters
|
||||
mu and sigma. The log of lognormal(mu, sigma) is a normal distribution with parameters
|
||||
mean mu and standard deviation sigma.
|
||||
`mu` and `sigma`. The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and standard deviation `sigma`.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormal(0, 0.7)" />
|
||||
|
||||
An alternative format is also available. The "to" notation creates a lognormal
|
||||
An alternative format is also available. The `to` notation creates a lognormal
|
||||
distribution with a 90% confidence interval between the two numbers. We add
|
||||
this convinience as lognormal distributions are commonly used in practice.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="2 to 10" />
|
||||
|
||||
### Future feature:
|
||||
Furthermore, it's also possible to create a lognormal from it's actual mean
|
||||
and standard deviation, using `lognormalFromMeanAndStdDev`.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormalFromMeanAndStdDev(20, 10)" />
|
||||
|
||||
### Beta distribution
|
||||
### Validity
|
||||
- `sigma > 0`
|
||||
- In `x to y` notation, `x < y`
|
||||
|
||||
The `beta(a, b)` function creates a beta distribution with parameters a and b:
|
||||
## Beta distribution
|
||||
|
||||
The `beta(a, b)` function creates a beta distribution with parameters `a` and `b`:
|
||||
|
||||
<SquiggleEditor initialSquiggleString="beta(20, 20)" />
|
||||
|
||||
### Exponential distribution
|
||||
### Validity
|
||||
- `a > 0`
|
||||
- `b > 0`
|
||||
- Empirically, we have noticed that numerical instability arises when `a < 1` or `b < 1`
|
||||
|
||||
The `exponential(mean)` function creates an exponential distribution with the given
|
||||
mean.
|
||||
## Exponential distribution
|
||||
|
||||
The `exponential(rate)` function creates an exponential distribution with the given
|
||||
rate.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="exponential(1)" />
|
||||
|
||||
### The Triangular distribution
|
||||
### Validity
|
||||
- `rate > 0`
|
||||
|
||||
## Triangular distribution
|
||||
|
||||
The `triangular(a,b,c)` function creates a triangular distribution with lower
|
||||
bound a, mode b and upper bound c.
|
||||
bound `a`, mode `b` and upper bound `c`.
|
||||
|
||||
### Validity
|
||||
- `a < b < c`
|
||||
|
||||
<SquiggleEditor initialSquiggleString="triangular(1, 2, 4)" />
|
||||
|
||||
### Multimodal distriutions
|
||||
## Scalar (constant dist)
|
||||
|
||||
The multimodal function combines 2 or more other distributions to create a weighted
|
||||
Squiggle, when the context is right, automatically casts a float to a constant distribution.
|
||||
|
||||
# Operating on distributions
|
||||
|
||||
Here are the ways we combine distributions.
|
||||
|
||||
## Mixture of distributions
|
||||
|
||||
The `mx` function combines 2 or more other distributions to create a weighted
|
||||
combination of the two. The first positional arguments represent the distributions
|
||||
to be combined, and the last argument is how much to weigh every distribution in the
|
||||
combination.
|
||||
|
@ -78,37 +110,114 @@ As well as mixed distributions:
|
|||
|
||||
<SquiggleEditor initialSquiggleString="mx(3, 8, 1 to 10, [0.2, 0.3, 0.5])" />
|
||||
|
||||
## Other Functions
|
||||
An alias of `mx` is `mixture`
|
||||
|
||||
### PDF of a distribution
|
||||
### Validity
|
||||
Using javascript's variable arguments notation, consider `mx(...dists, weights)`:
|
||||
- `dists.length == weights.length`
|
||||
|
||||
The `pdf(distribution, x)` function returns the density of a distribution at the
|
||||
## Addition (horizontal right shift)
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist1 = 1 to 10; dist2 = triangular(1,2,3); dist1 + dist2">
|
||||
|
||||
## Subtraction (horizontal left shift)
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist1 = 1 to 10; dist2 = triangular(1,2,3); dist1 - dist2">
|
||||
|
||||
## Multiplication (??)
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist1 = 1 to 10; dist2 = triangular(1,2,3); dist1 * dist2">
|
||||
|
||||
## Division (???)
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist1 = 1 to 10; dist2 = triangular(1,2,3); dist1 / dist2">
|
||||
|
||||
## Taking the base `e` exponential
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist = triangular(1,2,3); exp(dist)">
|
||||
|
||||
## Taking the base `e` and base `10` logarithm
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist = triangular(1,2,3); log(dist)">
|
||||
|
||||
<SquiggleEditor initialSquiggleString="dist = beta(1,2); log10(dist)">
|
||||
|
||||
### Validity
|
||||
- See [the current discourse](https://github.com/quantified-uncertainty/squiggle/issues/304)
|
||||
|
||||
# Standard functions on distributions
|
||||
|
||||
## Probability density function
|
||||
|
||||
The `pdf(dist, x)` function returns the density of a distribution at the
|
||||
given point x.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="pdf(normal(0,1),0)" />
|
||||
|
||||
### Inverse of a distribution
|
||||
### Validity
|
||||
- `x` must be a scalar
|
||||
- `dist` must be a distribution
|
||||
|
||||
The `inv(distribution, prob)` gives the value x or which the probability for all values
|
||||
lower than x is equal to prob. It is the inverse of `cdf`.
|
||||
## Cumulative density function
|
||||
|
||||
<SquiggleEditor initialSquiggleString="inv(normal(0,1),0.5)" />
|
||||
|
||||
### CDF of a distribution
|
||||
|
||||
The `cdf(distribution,x)` gives the cumulative probability of the distribution
|
||||
The `cdf(dist, x)` gives the cumulative probability of the distribution
|
||||
or all values lower than x. It is the inverse of `inv`.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="cdf(normal(0,1),0)" />
|
||||
|
||||
### Mean of a distribution
|
||||
### Validity
|
||||
- `x` must be a scalar
|
||||
- `dist` must be a distribution
|
||||
|
||||
## Inverse CDF
|
||||
|
||||
The `inv(dist, prob)` gives the value x or which the probability for all values
|
||||
lower than x is equal to prob. It is the inverse of `cdf`.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="inv(normal(0,1),0.5)" />
|
||||
|
||||
### Validity
|
||||
- `prob` must be a scalar (please only put it in `(0,1)`)
|
||||
- `dist` must be a distribution
|
||||
|
||||
## Mean
|
||||
|
||||
The `mean(distribution)` function gives the mean (expected value) of a distribution.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="mean(normal(5, 10))" />
|
||||
|
||||
### Sampling a distribution
|
||||
## Sampling a distribution
|
||||
|
||||
The `sample(distribution)` samples a given distribution.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="sample(normal(0, 10))" />
|
||||
|
||||
# Normalization
|
||||
|
||||
Some distribution operations (like horizontal shift) return an unnormalized distriibution.
|
||||
|
||||
We provide a `normalize` function
|
||||
|
||||
<SquiggleEditor initialSquiggleString="normalize((1e-1 to 1e0) + triangular(1e-1, 1e0, 1e1))" />
|
||||
### Valdity
|
||||
- Input to `normalize` must be a dist
|
||||
|
||||
We provide a predicate `isNormalized`, for when we have simple control flow
|
||||
|
||||
<SquiggleEditor initialSquiggleString="isNormalized((1e-1 to 1e0) * triangular(1e-1, 1e0, 1e1))" />
|
||||
|
||||
### Validity
|
||||
- Input to `isNormalized` must be a dist
|
||||
|
||||
# Convert any distribution to a sample set distribution
|
||||
|
||||
`toSampleSet` has two signatures
|
||||
|
||||
It is unary when you use an internal hardcoded number of samples
|
||||
|
||||
<SquiggleEditor initialSquiggleString="toSampleSet(1e-1 to 1e0)" />
|
||||
|
||||
And binary when you provide a number of samples (truncated)
|
||||
|
||||
<SquiggleEditor initialSquiggleString="toSampleSet(1e-1 to 1e0, 1e2)" />
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
---
|
||||
title: Statistical properties of algebraic combinations of distributions for property testing.
|
||||
title: Invariants
|
||||
urlcolor: blue
|
||||
author:
|
||||
- Nuño Sempere
|
||||
|
@ -7,8 +7,12 @@ author:
|
|||
abstract: This document outlines some properties about algebraic combinations of distributions. It is meant to facilitate property tests for [Squiggle](https://squiggle-language.com/), an estimation language for forecasters. So far, we are focusing on the means, the standard deviation and the shape of the pdfs.
|
||||
---
|
||||
|
||||
Invariants to check with property tests.
|
||||
|
||||
_This document right now is normative and aspirational, not a description of the testing that's currently done_.
|
||||
|
||||
# Algebraic combinations
|
||||
|
||||
The academic keyword to search for in relation to this document is "[algebra of random variables](https://wikiless.org/wiki/Algebra_of_random_variables?lang=en)". Squiggle doesn't yet support getting the standard deviation, denoted by $\sigma$, but such support could yet be added.
|
||||
|
||||
## Means and standard deviations
|
||||
|
@ -118,6 +122,20 @@ TODO
|
|||
|
||||
TODO
|
||||
|
||||
# `pdf`, `cdf`, and `inv`
|
||||
|
||||
With $\forall dist, pdf := x \mapsto \texttt{pdf}(dist, x) \land cdf := x \mapsto \texttt{cdf}(dist, x) \land inv := p \mapsto \texttt{inv}(dist, p)$,
|
||||
|
||||
## `cdf` and `inv` are inverses
|
||||
$$
|
||||
\forall x \in (0,1), cdf(inv(x)) = x \land \forall x \in \texttt{dom}(cdf), x = inv(cdf(x))
|
||||
$$
|
||||
|
||||
## The codomain of `cdf` equals the open interval `(0,1)` equals the codomain of `pdf`
|
||||
$$
|
||||
\texttt{cod}(cdf) = (0,1) = \texttt{cod}(pdf)
|
||||
$$
|
||||
|
||||
# To do:
|
||||
|
||||
- Provide sources or derivations, useful as this document becomes more complicated
|
||||
|
|
Loading…
Reference in New Issue
Block a user