squiggle/packages/squiggle-lang/__tests__/TS/SampleSet_test.ts

229 lines
7.1 KiB
TypeScript
Raw Permalink Normal View History

2022-04-20 03:42:24 +00:00
import { Distribution } from "../../src/js/index";
import { expectErrorToBeBounded, failDefault, testRun } from "./TestHelpers";
import * as fc from "fast-check";
// Beware: float64Array makes it appear in an infinite loop.
let arrayGen = () =>
2022-06-21 19:43:17 +00:00
fc
.float32Array({
minLength: 10,
maxLength: 10000,
noDefaultInfinity: true,
noNaN: true,
})
.filter(
(xs_) => Math.min(...Array.from(xs_)) != Math.max(...Array.from(xs_))
);
2022-04-20 22:48:04 +00:00
describe("cumulative density function", () => {
let n = 10000;
2022-04-20 22:48:04 +00:00
2022-04-20 23:07:25 +00:00
// We should fix this.
test.skip("'s codomain is bounded above", () => {
fc.assert(
fc.property(arrayGen(), fc.float(), (xs_, x) => {
let xs = Array.from(xs_);
// Should compute with squiggle strings once interpreter has `sample`
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(x).value;
let epsilon = 5e-7;
expect(cdfValue).toBeLessThanOrEqual(1 + epsilon);
})
);
});
2022-04-20 22:48:04 +00:00
test("'s codomain is bounded below", () => {
fc.assert(
fc.property(arrayGen(), fc.float(), (xs_, x) => {
let xs = Array.from(xs_);
// Should compute with squiggle strings once interpreter has `sample`
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(x).value;
expect(cdfValue).toBeGreaterThanOrEqual(0);
})
);
});
2022-04-26 16:22:31 +00:00
// This may not be true due to KDE estimating there to be mass above the
// highest value. These tests fail
test.skip("at the highest number in the sample is close to 1", () => {
fc.assert(
2022-04-20 22:48:04 +00:00
fc.property(arrayGen(), (xs_) => {
let xs = Array.from(xs_);
let max = Math.max(...xs);
// Should compute with squiggle strings once interpreter has `sample`
let dist = new Distribution(
2022-04-20 22:48:04 +00:00
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(max).value;
2022-04-23 23:18:02 +00:00
expect(cdfValue).toBeCloseTo(1.0, 2);
})
);
});
// I may simply be mistaken about the math here.
2022-04-20 23:07:25 +00:00
test.skip("at the lowest number in the distribution is within epsilon of 0", () => {
fc.assert(
fc.property(arrayGen(), (xs_) => {
let xs = Array.from(xs_);
let min = Math.min(...xs);
// Should compute with squiggle strings once interpreter has `sample`
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(min).value;
let max = Math.max(...xs);
let epsilon = 5e-3;
if (max - min < epsilon) {
expect(cdfValue).toBeGreaterThan(4 * epsilon);
} else {
expect(cdfValue).toBeLessThan(4 * epsilon);
}
})
);
});
// I believe this is true, but due to bugs can't get the test to pass.
2022-04-20 23:07:25 +00:00
test.skip("is <= 1 everywhere with equality when x is higher than the max", () => {
fc.assert(
fc.property(arrayGen(), fc.float(), (xs_, x) => {
let xs = Array.from(xs_);
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(x).value;
let max = Math.max(...xs);
if (x > max) {
let epsilon = (x - max) / x;
expect(cdfValue).toBeGreaterThan(1 * (1 - epsilon));
} else if (typeof cdfValue == "number") {
expect(Math.round(1e5 * cdfValue) / 1e5).toBeLessThanOrEqual(1);
} else {
failDefault();
}
})
);
});
2022-04-20 22:48:04 +00:00
test("is non-negative everywhere with zero when x is lower than the min", () => {
fc.assert(
2022-04-20 22:48:04 +00:00
fc.property(arrayGen(), fc.float(), (xs_, x) => {
let xs = Array.from(xs_);
let dist = new Distribution(
2022-04-20 22:48:04 +00:00
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let cdfValue = dist.cdf(x).value;
2022-06-21 19:43:17 +00:00
expect(cdfValue).toBeGreaterThanOrEqual(0);
})
);
});
});
2022-04-20 23:07:25 +00:00
// I no longer believe this is true.
describe("probability density function", () => {
let n = 1000;
test.skip("assigns to the max at most the weight of the mean", () => {
fc.assert(
fc.property(arrayGen(), (xs_) => {
let xs = Array.from(xs_);
let max = Math.max(...xs);
let mean = xs.reduce((a, b) => a + b, 0.0) / xs.length;
// Should be from squiggleString once interpreter exposes sampleset
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: n, xyPointLength: 100 }
);
let pdfValueMean = dist.pdf(mean).value;
let pdfValueMax = dist.pdf(max).value;
if (typeof pdfValueMean == "number" && typeof pdfValueMax == "number") {
expect(pdfValueMax).toBeLessThanOrEqual(pdfValueMean);
} else {
expect(pdfValueMax).toEqual(pdfValueMean);
}
})
);
});
});
// // This should be true, but I can't get it to work.
describe("mean is mean", () => {
test.skip("when sampling twice as widely as the input", () => {
fc.assert(
fc.property(
fc.float64Array({ minLength: 10, maxLength: 100000 }),
(xs_) => {
let xs = Array.from(xs_);
let n = xs.length;
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: 2 * n, xyPointLength: 4 * n }
);
let mean = dist.mean();
if (typeof mean.value == "number") {
expectErrorToBeBounded(
mean.value,
xs.reduce((a, b) => a + b, 0.0) / n,
5e-1,
1
);
} else {
failDefault();
}
}
)
);
});
2022-04-20 23:07:25 +00:00
test.skip("when sampling half as widely as the input", () => {
fc.assert(
fc.property(
fc.float64Array({ minLength: 10, maxLength: 100000 }),
(xs_) => {
let xs = Array.from(xs_);
let n = xs.length;
let dist = new Distribution(
{ tag: "SampleSet", value: xs },
{ sampleCount: Math.floor(n / 2), xyPointLength: 4 * n }
);
let mean = dist.mean();
if (typeof mean.value == "number") {
expectErrorToBeBounded(
mean.value,
xs.reduce((a, b) => a + b, 0.0) / n,
5e-1,
1
);
} else {
failDefault();
}
}
)
);
});
});
describe("fromSamples function", () => {
test.skip("gives a mean near the mean of the input", () => {
fc.assert(
fc.property(arrayGen(), (xs_) => {
let xs = Array.from(xs_);
let xsString = xs.toString();
let squiggleString = `x = fromSamples([${xsString}]); mean(x)`;
let squiggleResult = testRun(squiggleString);
let mean = xs.reduce((a, b) => a + b, 0.0) / xs.length;
expect(squiggleResult.value).toBeCloseTo(mean, 4);
})
);
});
});