used skip instead of commenting out
This commit is contained in:
parent
264d970348
commit
cc29eb33be
|
@ -9,9 +9,7 @@ import * as fc from "fast-check";
|
|||
|
||||
describe("Squiggle's parser is whitespace insensitive", () => {
|
||||
test("when assigning a distribution to a name and calling that name", () => {
|
||||
/*
|
||||
* intersperse varying amounts of whitespace in a squiggle string
|
||||
*/
|
||||
// intersperse varying amounts of whitespace in a squiggle string
|
||||
let squiggleString = (
|
||||
a: string,
|
||||
b: string,
|
||||
|
|
|
@ -1,39 +1,37 @@
|
|||
// import { errorValueToString } from "../../src/js/index";
|
||||
// import { testRun, expectErrorToBeBounded } from "./TestHelpers";
|
||||
// import * as fc from "fast-check";
|
||||
import { testRun, expectErrorToBeBounded } from "./TestHelpers";
|
||||
import * as fc from "fast-check";
|
||||
|
||||
// describe("Mean of mixture is weighted average of means", () => {
|
||||
// test("mx(beta(a,b), lognormal(m,s), [x,y])", () => {
|
||||
// fc.assert(
|
||||
// fc.property(
|
||||
// fc.float({ min: 1e-1 }), // alpha
|
||||
// fc.float({ min: 1 }), // beta
|
||||
// fc.float(), // mu
|
||||
// fc.float({ min: 1e-1 }), // sigma
|
||||
// fc.float({ min: 1e-7 }),
|
||||
// fc.float({ min: 1e-7 }),
|
||||
// (a, b, m, s, x, y) => {
|
||||
// let squiggleString = `mean(mixture(beta(${a},${b}), lognormal(${m},${s}), [${x}, ${y}]))`;
|
||||
// let res = testRun(squiggleString);
|
||||
// let weightDenom = x + y;
|
||||
// let betaWeight = x / weightDenom;
|
||||
// let lognormalWeight = y / weightDenom;
|
||||
// let betaMean = 1 / (1 + b / a);
|
||||
// let lognormalMean = m + s ** 2 / 2;
|
||||
// if (res.tag == "number") {
|
||||
// expectErrorToBeBounded(
|
||||
// res.value,
|
||||
// betaWeight * betaMean + lognormalWeight * lognormalMean,
|
||||
// 1,
|
||||
// 2
|
||||
// );
|
||||
// } else {
|
||||
// expect(res.value).toEqual("some error message");
|
||||
// }
|
||||
// }
|
||||
// )
|
||||
// );
|
||||
// });
|
||||
// });
|
||||
|
||||
describe("vacuous", () => test("vacuous", () => expect(true).toEqual(true)));
|
||||
describe("Mean of mixture is weighted average of means", () => {
|
||||
test.skip("mx(beta(a,b), lognormal(m,s), [x,y])", () => {
|
||||
fc.assert(
|
||||
fc.property(
|
||||
fc.float({ min: 1e-1 }), // alpha
|
||||
fc.float({ min: 1 }), // beta
|
||||
fc.float(), // mu
|
||||
fc.float({ min: 1e-1 }), // sigma
|
||||
fc.float({ min: 1e-7 }),
|
||||
fc.float({ min: 1e-7 }),
|
||||
(a, b, m, s, x, y) => {
|
||||
let squiggleString = `mean(mixture(beta(${a},${b}), lognormal(${m},${s}), [${x}, ${y}]))`;
|
||||
let res = testRun(squiggleString);
|
||||
let weightDenom = x + y;
|
||||
let betaWeight = x / weightDenom;
|
||||
let lognormalWeight = y / weightDenom;
|
||||
let betaMean = 1 / (1 + b / a);
|
||||
let lognormalMean = m + s ** 2 / 2;
|
||||
if (res.tag == "number") {
|
||||
expectErrorToBeBounded(
|
||||
res.value,
|
||||
betaWeight * betaMean + lognormalWeight * lognormalMean,
|
||||
1,
|
||||
2
|
||||
);
|
||||
} else {
|
||||
expect(res.value).toEqual("some error message");
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
});
|
||||
});
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import { Distribution } from "../../src/js/index";
|
||||
// import { expectErrorToBeBounded, failDefault } from "./TestHelpers";
|
||||
import { expectErrorToBeBounded, failDefault } from "./TestHelpers";
|
||||
import * as fc from "fast-check";
|
||||
|
||||
// Beware: float64Array makes it appear in an infinite loop.
|
||||
|
@ -14,22 +14,22 @@ let arrayGen = () =>
|
|||
describe("cumulative density function", () => {
|
||||
let n = 10000;
|
||||
|
||||
// // We should obtain the math here.
|
||||
// test("'s codomain is bounded above", () => {
|
||||
// fc.assert(
|
||||
// fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// // Should compute with squiggle strings once interpreter has `sample`
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: n, xyPointLength: 100 }
|
||||
// );
|
||||
// let cdfValue = dist.cdf(x).value;
|
||||
// let epsilon = 5e-7
|
||||
// expect(cdfValue).toBeLessThanOrEqual(1 + epsilon)
|
||||
// })
|
||||
// );
|
||||
// })
|
||||
// We should fix this.
|
||||
test.skip("'s codomain is bounded above", () => {
|
||||
fc.assert(
|
||||
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
||||
let xs = Array.from(xs_);
|
||||
// Should compute with squiggle strings once interpreter has `sample`
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: n, xyPointLength: 100 }
|
||||
);
|
||||
let cdfValue = dist.cdf(x).value;
|
||||
let epsilon = 5e-7;
|
||||
expect(cdfValue).toBeLessThanOrEqual(1 + epsilon);
|
||||
})
|
||||
);
|
||||
});
|
||||
|
||||
test("'s codomain is bounded below", () => {
|
||||
fc.assert(
|
||||
|
@ -69,50 +69,50 @@ describe("cumulative density function", () => {
|
|||
});
|
||||
|
||||
// I may simply be mistaken about the math here.
|
||||
// test("at the lowest number in the distribution is within epsilon of 0", () => {
|
||||
// fc.assert(
|
||||
// fc.property(arrayGen(), (xs_) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// let min = Math.min(...xs);
|
||||
// // Should compute with squiggle strings once interpreter has `sample`
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: n, xyPointLength: 100 }
|
||||
// );
|
||||
// let cdfValue = dist.cdf(min).value;
|
||||
// let max = Math.max(...xs);
|
||||
// let epsilon = 5e-3;
|
||||
// if (max - min < epsilon) {
|
||||
// expect(cdfValue).toBeGreaterThan(4 * epsilon);
|
||||
// } else {
|
||||
// expect(cdfValue).toBeLessThan(4 * epsilon);
|
||||
// }
|
||||
// })
|
||||
// );
|
||||
// });
|
||||
test.skip("at the lowest number in the distribution is within epsilon of 0", () => {
|
||||
fc.assert(
|
||||
fc.property(arrayGen(), (xs_) => {
|
||||
let xs = Array.from(xs_);
|
||||
let min = Math.min(...xs);
|
||||
// Should compute with squiggle strings once interpreter has `sample`
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: n, xyPointLength: 100 }
|
||||
);
|
||||
let cdfValue = dist.cdf(min).value;
|
||||
let max = Math.max(...xs);
|
||||
let epsilon = 5e-3;
|
||||
if (max - min < epsilon) {
|
||||
expect(cdfValue).toBeGreaterThan(4 * epsilon);
|
||||
} else {
|
||||
expect(cdfValue).toBeLessThan(4 * epsilon);
|
||||
}
|
||||
})
|
||||
);
|
||||
});
|
||||
|
||||
// I believe this is true, but due to bugs can't get the test to pass.
|
||||
// test("is <= 1 everywhere with equality when x is higher than the max", () => {
|
||||
// fc.assert(
|
||||
// fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: n, xyPointLength: 100 }
|
||||
// );
|
||||
// let cdfValue = dist.cdf(x).value;
|
||||
// let max = Math.max(...xs)
|
||||
// if (x > max) {
|
||||
// let epsilon = (x - max) / x
|
||||
// expect(cdfValue).toBeGreaterThan(1 * (1 - epsilon));
|
||||
// } else if (typeof cdfValue == "number") {
|
||||
// expect(Math.round(1e5 * cdfValue) / 1e5).toBeLessThanOrEqual(1);
|
||||
// } else {
|
||||
// failDefault()
|
||||
// }
|
||||
// })
|
||||
// );
|
||||
// });
|
||||
test.skip("is <= 1 everywhere with equality when x is higher than the max", () => {
|
||||
fc.assert(
|
||||
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
||||
let xs = Array.from(xs_);
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: n, xyPointLength: 100 }
|
||||
);
|
||||
let cdfValue = dist.cdf(x).value;
|
||||
let max = Math.max(...xs);
|
||||
if (x > max) {
|
||||
let epsilon = (x - max) / x;
|
||||
expect(cdfValue).toBeGreaterThan(1 * (1 - epsilon));
|
||||
} else if (typeof cdfValue == "number") {
|
||||
expect(Math.round(1e5 * cdfValue) / 1e5).toBeLessThanOrEqual(1);
|
||||
} else {
|
||||
failDefault();
|
||||
}
|
||||
})
|
||||
);
|
||||
});
|
||||
|
||||
test("is non-negative everywhere with zero when x is lower than the min", () => {
|
||||
fc.assert(
|
||||
|
@ -133,76 +133,86 @@ describe("cumulative density function", () => {
|
|||
});
|
||||
});
|
||||
|
||||
// // I no longer believe this is true.
|
||||
// describe("probability density function", () => {
|
||||
// let n = 1000;
|
||||
//
|
||||
// test("assigns to the max at most the weight of the mean", () => {
|
||||
// fc.assert(
|
||||
// fc.property(arrayGen(), (xs_) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// let max = Math.max(...xs);
|
||||
// let mean = xs.reduce((a, b) => a + b, 0.0) / ys.length;
|
||||
// // Should be from squiggleString once interpreter exposes sampleset
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: n, xyPointLength: 100 }
|
||||
// );
|
||||
// let pdfValueMean = dist.pdf(mean).value;
|
||||
// let pdfValueMax = dist.pdf(max).value;
|
||||
// if (typeof pdfValueMean == "number" && typeof pdfValueMax == "number") {
|
||||
// expect(pdfValueMax).toBeLessThanOrEqual(pdfValueMean);
|
||||
// } else {
|
||||
// expect(pdfValueMax).toEqual(pdfValueMean);
|
||||
// }
|
||||
// })
|
||||
// );
|
||||
// });
|
||||
// });
|
||||
// I no longer believe this is true.
|
||||
describe("probability density function", () => {
|
||||
let n = 1000;
|
||||
|
||||
// This should be true, but I can't get it to work.
|
||||
// describe("mean is mean", () => {
|
||||
// test("when sampling twice as widely as the input", () => {
|
||||
// fc.assert(
|
||||
// fc.property(
|
||||
// fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
||||
// (xs_) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// let n = xs.length;
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: 2 * n, xyPointLength: 4 * n }
|
||||
// );
|
||||
// let mean = dist.mean()
|
||||
// if (typeof mean.value == "number") {
|
||||
// expectErrorToBeBounded(mean.value, xs.reduce((a, b) => a + b, 0.0) / n, 5e-1, 1)
|
||||
// } else {
|
||||
// failDefault()
|
||||
// }
|
||||
// }
|
||||
// )
|
||||
// );
|
||||
// });
|
||||
//
|
||||
// test("when sampling half as widely as the input", () => {
|
||||
// fc.assert(
|
||||
// fc.property(
|
||||
// fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
||||
// (xs_) => {
|
||||
// let xs = Array.from(xs_);
|
||||
// let n = xs.length;
|
||||
// let dist = new Distribution(
|
||||
// { tag: "SampleSet", value: xs },
|
||||
// { sampleCount: Math.floor(n / 2), xyPointLength: 4 * n }
|
||||
// );
|
||||
// let mean = dist.mean()
|
||||
// if (typeof mean.value == "number") {
|
||||
// expectErrorToBeBounded(mean.value, xs.reduce((a, b) => a + b, 0.0) / n, 5e-1, 1)
|
||||
// } else {
|
||||
// failDefault()
|
||||
// }
|
||||
// }
|
||||
// )
|
||||
// );
|
||||
// });
|
||||
// });
|
||||
test.skip("assigns to the max at most the weight of the mean", () => {
|
||||
fc.assert(
|
||||
fc.property(arrayGen(), (xs_) => {
|
||||
let xs = Array.from(xs_);
|
||||
let max = Math.max(...xs);
|
||||
let mean = xs.reduce((a, b) => a + b, 0.0) / xs.length;
|
||||
// Should be from squiggleString once interpreter exposes sampleset
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: n, xyPointLength: 100 }
|
||||
);
|
||||
let pdfValueMean = dist.pdf(mean).value;
|
||||
let pdfValueMax = dist.pdf(max).value;
|
||||
if (typeof pdfValueMean == "number" && typeof pdfValueMax == "number") {
|
||||
expect(pdfValueMax).toBeLessThanOrEqual(pdfValueMean);
|
||||
} else {
|
||||
expect(pdfValueMax).toEqual(pdfValueMean);
|
||||
}
|
||||
})
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
// // This should be true, but I can't get it to work.
|
||||
describe("mean is mean", () => {
|
||||
test.skip("when sampling twice as widely as the input", () => {
|
||||
fc.assert(
|
||||
fc.property(
|
||||
fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
||||
(xs_) => {
|
||||
let xs = Array.from(xs_);
|
||||
let n = xs.length;
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: 2 * n, xyPointLength: 4 * n }
|
||||
);
|
||||
let mean = dist.mean();
|
||||
if (typeof mean.value == "number") {
|
||||
expectErrorToBeBounded(
|
||||
mean.value,
|
||||
xs.reduce((a, b) => a + b, 0.0) / n,
|
||||
5e-1,
|
||||
1
|
||||
);
|
||||
} else {
|
||||
failDefault();
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
});
|
||||
|
||||
test.skip("when sampling half as widely as the input", () => {
|
||||
fc.assert(
|
||||
fc.property(
|
||||
fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
||||
(xs_) => {
|
||||
let xs = Array.from(xs_);
|
||||
let n = xs.length;
|
||||
let dist = new Distribution(
|
||||
{ tag: "SampleSet", value: xs },
|
||||
{ sampleCount: Math.floor(n / 2), xyPointLength: 4 * n }
|
||||
);
|
||||
let mean = dist.mean();
|
||||
if (typeof mean.value == "number") {
|
||||
expectErrorToBeBounded(
|
||||
mean.value,
|
||||
xs.reduce((a, b) => a + b, 0.0) / n,
|
||||
5e-1,
|
||||
1
|
||||
);
|
||||
} else {
|
||||
failDefault();
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
});
|
||||
});
|
||||
|
|
|
@ -7,11 +7,6 @@ import {
|
|||
// result,
|
||||
} from "../../src/js/index";
|
||||
|
||||
export function testRunR(x: string): any {
|
||||
//: result<squiggleExpression, errorValue> => {
|
||||
return run(x, { sampleCount: 1000, xyPointLength: 100 });
|
||||
}
|
||||
|
||||
export function testRun(x: string): squiggleExpression {
|
||||
let squiggleResult = run(x, { sampleCount: 1000, xyPointLength: 100 });
|
||||
// return squiggleResult.value
|
||||
|
|
Loading…
Reference in New Issue
Block a user