Daily commit
This commit is contained in:
parent
1fc92abfce
commit
805a696d1c
14
README.md
14
README.md
|
@ -23,24 +23,14 @@ From the top level directory, enter: `npm run start`
|
||||||
|
|
||||||
## What are "stars" and how are they computed
|
## What are "stars" and how are they computed
|
||||||
|
|
||||||
Star ratings—e.g. ★★★☆☆—are an indicator of the quality of an aggregate forecast for a question. These ratings currently try to reflect my own best judgment based on my experience forecasting on these platforms. Thus, stars have a strong subjective component which could be formalized and refined in the future.
|
Star ratings—e.g. ★★★☆☆—are an indicator of the quality of an aggregate forecast for a question. These ratings currently try to reflect my own best judgment and the best judgment of forecasting experts I've asked, based on our collective experience forecasting on these platforms. Thus, stars have a strong subjective component which could be formalized and refined in the future. You can see the code used to decide how many stars to assign [here](https://github.com/QURIresearch/metaforecasts/blob/master/src/stars.js)
|
||||||
|
|
||||||
Currently, stars are computed using a simple rule dependent on both the platform and the number of forecasts:
|
With regards the quality, I am most uncertain about Smarkets, Hypermind, Ladbrokes and WilliamHill, as I haven't used them as much. Also note that, whatever other redeeming features they might have, prediction markets rarely go above 95% or below 5%.
|
||||||
- CSET-foretell: ★★☆☆☆, but ★☆☆☆☆ if a question has less than 100 forecasts
|
|
||||||
- Elicit: ★☆☆☆☆
|
|
||||||
- Good Judgment (various superforecaster dashboards): ★★★★☆
|
|
||||||
- Good Judgment Open: ★★★☆☆, ★★☆☆☆ if a question has less than 100 forecasts
|
|
||||||
- Hypermind: ★★★☆☆
|
|
||||||
- Metaculus: ★★★★☆ if a question has more than 300 forecasts, ★★★☆☆ if it has more than 100, ★★☆☆☆ otherwise.
|
|
||||||
- Omen: ★☆☆☆☆
|
|
||||||
- Polymarket: ★★☆☆☆
|
|
||||||
- PredictIt: ★★☆☆☆
|
|
||||||
|
|
||||||
## Various notes
|
## Various notes
|
||||||
|
|
||||||
- Right now, I'm fetching only a couple of common properties, such as the title, url, platform, whether a question is binary (yes/no), its percentage, and the number of forecasts. However, the code contains more fields commented out, such as trade volume, liquidity, etc.
|
- Right now, I'm fetching only a couple of common properties, such as the title, url, platform, whether a question is binary (yes/no), its percentage, and the number of forecasts. However, the code contains more fields commented out, such as trade volume, liquidity, etc.
|
||||||
- A note as to quality: Tentatively, Good Judgment >> Good Judgment Open ~ Metaculus > CSET > PredictIt ~> Polymarket >> Elicit > Omen.
|
- A note as to quality: Tentatively, Good Judgment >> Good Judgment Open ~ Metaculus > CSET > PredictIt ~> Polymarket >> Elicit > Omen.
|
||||||
- I'm not really sure where Hypermind falls in that spectrum.
|
- I'm not really sure where Hypermind falls in that spectrum.
|
||||||
- Prediction markets rarely go above 95% or below 5%.
|
|
||||||
- For elicit and metaculus, this library currently filters questions with <10 predictions.
|
- For elicit and metaculus, this library currently filters questions with <10 predictions.
|
||||||
- Omen *does* have very few active predictions at the moment; this is not a mistake.
|
- Omen *does* have very few active predictions at the moment; this is not a mistake.
|
||||||
|
|
|
@ -7,32 +7,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 5.5%",
|
"name": "Less than 5.5%",
|
||||||
"probability": 0.1117,
|
"probability": 0.1292,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 5.5% but less than or equal to 7%",
|
"name": "More than 5.5% but less than or equal to 7%",
|
||||||
"probability": 0.2214,
|
"probability": 0.2303,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 7% and 9.5%, inclusive",
|
"name": "Between 7% and 9.5%, inclusive",
|
||||||
"probability": 0.3429,
|
"probability": 0.317,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 9.5% and 12%, inclusive",
|
"name": "Between 9.5% and 12%, inclusive",
|
||||||
"probability": 0.1877,
|
"probability": 0.16620000000000001,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 12%",
|
"name": "More than 12%",
|
||||||
"probability": 0.1363,
|
"probability": 0.1573,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "56",
|
"numforecasts": "65",
|
||||||
"numforecasters": "45",
|
"numforecasters": "53",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -106,32 +106,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 7,500",
|
"name": "Less than 7,500",
|
||||||
"probability": 0.0405,
|
"probability": 0.039599999999999996,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 7,500 and 9,500, inclusive",
|
"name": "Between 7,500 and 9,500, inclusive",
|
||||||
"probability": 0.12300000000000001,
|
"probability": 0.13,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 9,500 but less than or equal to 11,500",
|
"name": "More than 9,500 but less than or equal to 11,500",
|
||||||
"probability": 0.2775,
|
"probability": 0.2783,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 11,500 but less than or equal to 13,500",
|
"name": "More than 11,500 but less than or equal to 13,500",
|
||||||
"probability": 0.3145,
|
"probability": 0.31,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 13,500",
|
"name": "More than 13,500",
|
||||||
"probability": 0.2445,
|
"probability": 0.2421,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "32",
|
"numforecasts": "42",
|
||||||
"numforecasters": "28",
|
"numforecasters": "34",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -142,32 +142,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 70,000",
|
"name": "Less than 70,000",
|
||||||
"probability": 0.1305,
|
"probability": 0.1119,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 70,000 and 90,000, inclusive",
|
"name": "Between 70,000 and 90,000, inclusive",
|
||||||
"probability": 0.30920000000000003,
|
"probability": 0.316,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 90,000 but less than or equal to 110,000",
|
"name": "More than 90,000 but less than or equal to 110,000",
|
||||||
"probability": 0.30260000000000004,
|
"probability": 0.3179,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 110,000 but less than or equal to 130,000",
|
"name": "More than 110,000 but less than or equal to 130,000",
|
||||||
"probability": 0.17559999999999998,
|
"probability": 0.175,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 130,000",
|
"name": "More than 130,000",
|
||||||
"probability": 0.0821,
|
"probability": 0.0793,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "65",
|
"numforecasts": "70",
|
||||||
"numforecasters": "56",
|
"numforecasters": "60",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -178,32 +178,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than $400 billion",
|
"name": "Less than $400 billion",
|
||||||
"probability": 0.14,
|
"probability": 0.1371,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between $400 billion and $525 billion, inclusive",
|
"name": "Between $400 billion and $525 billion, inclusive",
|
||||||
"probability": 0.1746,
|
"probability": 0.17859999999999998,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $525 billion but less than or equal to $650 billion",
|
"name": "More than $525 billion but less than or equal to $650 billion",
|
||||||
"probability": 0.4854,
|
"probability": 0.4921,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $650 billion but less than or equal to $775 billion",
|
"name": "More than $650 billion but less than or equal to $775 billion",
|
||||||
"probability": 0.1877,
|
"probability": 0.18,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $775 billion",
|
"name": "More than $775 billion",
|
||||||
"probability": 0.0123,
|
"probability": 0.0121,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "21",
|
"numforecasts": "22",
|
||||||
"numforecasters": "19",
|
"numforecasters": "20",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -250,32 +250,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than $470 billion",
|
"name": "Less than $470 billion",
|
||||||
"probability": 0.048799999999999996,
|
"probability": 0.04650000000000001,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between $470 billion and $540 billion, inclusive",
|
"name": "Between $470 billion and $540 billion, inclusive",
|
||||||
"probability": 0.1074,
|
"probability": 0.10490000000000001,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $540 billion but less than or equal to $610 billion",
|
"name": "More than $540 billion but less than or equal to $610 billion",
|
||||||
"probability": 0.23,
|
"probability": 0.2274,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $610 billion but less than or equal to $680 billion",
|
"name": "More than $610 billion but less than or equal to $680 billion",
|
||||||
"probability": 0.32789999999999997,
|
"probability": 0.31370000000000003,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $680 billion",
|
"name": "More than $680 billion",
|
||||||
"probability": 0.28600000000000003,
|
"probability": 0.3074,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "64",
|
"numforecasts": "66",
|
||||||
"numforecasters": "61",
|
"numforecasters": "62",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -295,8 +295,8 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "114",
|
"numforecasts": "120",
|
||||||
"numforecasters": "101",
|
"numforecasters": "105",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -352,7 +352,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "46",
|
"numforecasts": "47",
|
||||||
"numforecasters": "43",
|
"numforecasters": "43",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
@ -369,17 +369,17 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between $13 billion and $17 billion, inclusive",
|
"name": "Between $13 billion and $17 billion, inclusive",
|
||||||
"probability": 0.1307,
|
"probability": 0.129,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $17 billion but less than or equal to $21 billion",
|
"name": "More than $17 billion but less than or equal to $21 billion",
|
||||||
"probability": 0.4276,
|
"probability": 0.4286,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $21 billion but less than or equal to $25 billion",
|
"name": "More than $21 billion but less than or equal to $25 billion",
|
||||||
"probability": 0.32659999999999995,
|
"probability": 0.3272,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -388,7 +388,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "46",
|
"numforecasts": "49",
|
||||||
"numforecasters": "41",
|
"numforecasters": "41",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
@ -400,12 +400,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than -0.25",
|
"name": "Less than -0.25",
|
||||||
"probability": 0.1855,
|
"probability": 0.1868,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between -0.25 and 0, inclusive",
|
"name": "Between -0.25 and 0, inclusive",
|
||||||
"probability": 0.31679999999999997,
|
"probability": 0.3164,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -415,7 +415,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 0.25 but less than or equal to 0.5",
|
"name": "More than 0.25 but less than or equal to 0.5",
|
||||||
"probability": 0.155,
|
"probability": 0.1542,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -424,7 +424,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "127",
|
"numforecasts": "128",
|
||||||
"numforecasters": "108",
|
"numforecasters": "108",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -436,32 +436,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than $200 million",
|
"name": "Less than $200 million",
|
||||||
"probability": 0.052300000000000006,
|
"probability": 0.0506,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between $200 million and $350 million, inclusive",
|
"name": "Between $200 million and $350 million, inclusive",
|
||||||
"probability": 0.20329999999999998,
|
"probability": 0.2032,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $350 million but less than or equal to $500 million",
|
"name": "More than $350 million but less than or equal to $500 million",
|
||||||
"probability": 0.359,
|
"probability": 0.3639,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $500 million but less than or equal to $650 million",
|
"name": "More than $500 million but less than or equal to $650 million",
|
||||||
"probability": 0.239,
|
"probability": 0.2382,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $650 million",
|
"name": "More than $650 million",
|
||||||
"probability": 0.1464,
|
"probability": 0.14400000000000002,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "102",
|
"numforecasts": "107",
|
||||||
"numforecasters": "89",
|
"numforecasters": "90",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -477,26 +477,26 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between $30 million and $70 million, inclusive",
|
"name": "Between $30 million and $70 million, inclusive",
|
||||||
"probability": 0.3074,
|
"probability": 0.30329999999999996,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $70 million but less than or equal to $110 million",
|
"name": "More than $70 million but less than or equal to $110 million",
|
||||||
"probability": 0.33240000000000003,
|
"probability": 0.3326,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $110 million but less than or equal to $150 million",
|
"name": "More than $110 million but less than or equal to $150 million",
|
||||||
"probability": 0.18989999999999999,
|
"probability": 0.1923,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than $150 million",
|
"name": "More than $150 million",
|
||||||
"probability": 0.1208,
|
"probability": 0.1223,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "125",
|
"numforecasts": "127",
|
||||||
"numforecasters": "114",
|
"numforecasters": "114",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -508,32 +508,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 26,000",
|
"name": "Less than 26,000",
|
||||||
"probability": 0.037200000000000004,
|
"probability": 0.039,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 26,000 and 28,000, inclusive",
|
"name": "Between 26,000 and 28,000, inclusive",
|
||||||
"probability": 0.0728,
|
"probability": 0.0834,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 28,000 but less than or equal to 30,000",
|
"name": "More than 28,000 but less than or equal to 30,000",
|
||||||
"probability": 0.1883,
|
"probability": 0.19829999999999998,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 30,000 but less than or equal to 32,000",
|
"name": "More than 30,000 but less than or equal to 32,000",
|
||||||
"probability": 0.3583,
|
"probability": 0.3469,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 32,000",
|
"name": "More than 32,000",
|
||||||
"probability": 0.34340000000000004,
|
"probability": 0.33240000000000003,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "53",
|
"numforecasts": "62",
|
||||||
"numforecasters": "41",
|
"numforecasters": "42",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -544,7 +544,7 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 800",
|
"name": "Less than 800",
|
||||||
"probability": 0.131,
|
"probability": 0.1329,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -554,21 +554,21 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 4,000 but less than or equal to 20,000",
|
"name": "More than 4,000 but less than or equal to 20,000",
|
||||||
"probability": 0.2918,
|
"probability": 0.2904,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 20,000 but less than or equal to 100,000",
|
"name": "More than 20,000 but less than or equal to 100,000",
|
||||||
"probability": 0.09820000000000001,
|
"probability": 0.09720000000000001,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 100,000",
|
"name": "More than 100,000",
|
||||||
"probability": 0.026600000000000002,
|
"probability": 0.0271,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "130",
|
"numforecasts": "131",
|
||||||
"numforecasters": "99",
|
"numforecasters": "99",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -604,7 +604,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "54",
|
"numforecasts": "55",
|
||||||
"numforecasters": "50",
|
"numforecasters": "50",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
@ -625,7 +625,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "130",
|
"numforecasts": "134",
|
||||||
"numforecasters": "86",
|
"numforecasters": "86",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -637,22 +637,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Zero",
|
"name": "Zero",
|
||||||
"probability": 0.40880000000000005,
|
"probability": 0.4242,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "One",
|
"name": "One",
|
||||||
"probability": 0.3373,
|
"probability": 0.3281,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Two or more",
|
"name": "Two or more",
|
||||||
"probability": 0.2539,
|
"probability": 0.24760000000000001,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "104",
|
"numforecasts": "108",
|
||||||
"numforecasters": "85",
|
"numforecasters": "86",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -687,7 +687,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "64",
|
"numforecasts": "65",
|
||||||
"numforecasters": "59",
|
"numforecasters": "59",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
@ -699,17 +699,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.58,
|
"probability": 0.57,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.42,
|
"probability": 0.43,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "288",
|
"numforecasts": "295",
|
||||||
"numforecasters": "185",
|
"numforecasters": "187",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -720,27 +720,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Before February 17, 2021",
|
"name": "Before February 17, 2021",
|
||||||
"probability": 0.0352,
|
"probability": 0.0348,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between February 17 and May 19, 2021, inclusive",
|
"name": "Between February 17 and May 19, 2021, inclusive",
|
||||||
"probability": 0.1042,
|
"probability": 0.1032,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "After May 19, but before or equal to November 17, 2021",
|
"name": "After May 19, but before or equal to November 17, 2021",
|
||||||
"probability": 0.2343,
|
"probability": 0.23579999999999998,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "After November 17, 2021",
|
"name": "After November 17, 2021",
|
||||||
"probability": 0.6263000000000001,
|
"probability": 0.6262,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "213",
|
"numforecasts": "220",
|
||||||
"numforecasters": "131",
|
"numforecasters": "132",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -751,32 +751,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 59%",
|
"name": "Less than 59%",
|
||||||
"probability": 0.1308,
|
"probability": 0.12789999999999999,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 59% and 66%, inclusive",
|
"name": "Between 59% and 66%, inclusive",
|
||||||
"probability": 0.1877,
|
"probability": 0.18420000000000003,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 66% but less than or equal to 73%",
|
"name": "More than 66% but less than or equal to 73%",
|
||||||
"probability": 0.25920000000000004,
|
"probability": 0.2625,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 73% but less than or equal to 80%",
|
"name": "More than 73% but less than or equal to 80%",
|
||||||
"probability": 0.2851,
|
"probability": 0.28800000000000003,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 80%",
|
"name": "More than 80%",
|
||||||
"probability": 0.13720000000000002,
|
"probability": 0.1374,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "204",
|
"numforecasts": "210",
|
||||||
"numforecasters": "164",
|
"numforecasters": "166",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -787,32 +787,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 15%",
|
"name": "Less than 15%",
|
||||||
"probability": 0.0746,
|
"probability": 0.07919999999999999,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 15% and 17%, inclusive",
|
"name": "Between 15% and 17%, inclusive",
|
||||||
"probability": 0.1888,
|
"probability": 0.1931,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 17% but less than or equal to 19%",
|
"name": "More than 17% but less than or equal to 19%",
|
||||||
"probability": 0.32130000000000003,
|
"probability": 0.3221,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 19% but less than or equal to 21%",
|
"name": "More than 19% but less than or equal to 21%",
|
||||||
"probability": 0.2735,
|
"probability": 0.2644,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 21%",
|
"name": "More than 21%",
|
||||||
"probability": 0.1419,
|
"probability": 0.1413,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "136",
|
"numforecasts": "139",
|
||||||
"numforecasters": "104",
|
"numforecasters": "105",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -832,7 +832,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "168",
|
"numforecasts": "171",
|
||||||
"numforecasters": "129",
|
"numforecasters": "129",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -868,7 +868,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "197",
|
"numforecasts": "199",
|
||||||
"numforecasters": "138",
|
"numforecasters": "138",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
|
@ -880,32 +880,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 675",
|
"name": "Less than 675",
|
||||||
"probability": 0.5722,
|
"probability": 0.6076,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 675 and 750, inclusive",
|
"name": "Between 675 and 750, inclusive",
|
||||||
"probability": 0.2249,
|
"probability": 0.2086,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 750 but less than or equal to 825",
|
"name": "More than 750 but less than or equal to 825",
|
||||||
"probability": 0.1091,
|
"probability": 0.0998,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 825 but less than or equal to 900",
|
"name": "More than 825 but less than or equal to 900",
|
||||||
"probability": 0.060700000000000004,
|
"probability": 0.0528,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 900",
|
"name": "More than 900",
|
||||||
"probability": 0.0331,
|
"probability": 0.031200000000000002,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "139",
|
"numforecasts": "146",
|
||||||
"numforecasters": "80",
|
"numforecasters": "82",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
}
|
}
|
||||||
]
|
]
|
File diff suppressed because it is too large
Load Diff
|
@ -443,7 +443,7 @@
|
||||||
"title": "In United States v. Cooley, the SCOTUS will affirm the lower court's decision",
|
"title": "In United States v. Cooley, the SCOTUS will affirm the lower court's decision",
|
||||||
"url": "https://fantasyscotus.net/user-predictions/case/united-states-v-cooley/",
|
"url": "https://fantasyscotus.net/user-predictions/case/united-states-v-cooley/",
|
||||||
"platform": "FantasySCOTUS",
|
"platform": "FantasySCOTUS",
|
||||||
"description": "0.00% (0 out of 8) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 9-0. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
"description": "0.00% (0 out of 9) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 9-0. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
|
@ -456,54 +456,54 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": 8,
|
"numforecasts": 9,
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "In Caniglia v. Strom, the SCOTUS will affirm the lower court's decision",
|
"title": "In Caniglia v. Strom, the SCOTUS will affirm the lower court's decision",
|
||||||
"url": "https://fantasyscotus.net/user-predictions/case/caniglia-v-strom/",
|
"url": "https://fantasyscotus.net/user-predictions/case/caniglia-v-strom/",
|
||||||
"platform": "FantasySCOTUS",
|
"platform": "FantasySCOTUS",
|
||||||
"description": "16.67% (1 out of 6) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
"description": "28.57% (2 out of 7) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.16666666666666666,
|
"probability": 0.2857142857142857,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.8333333333333334,
|
"probability": 0.7142857142857143,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": 6,
|
"numforecasts": 7,
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "In Goldman Sachs Group Inc. v. Arkansas Teacher Retirement System, the SCOTUS will affirm the lower court's decision",
|
"title": "In Goldman Sachs Group Inc. v. Arkansas Teacher Retirement System, the SCOTUS will affirm the lower court's decision",
|
||||||
"url": "https://fantasyscotus.net/user-predictions/case/goldman-sachs-group-inc-v-arkansas-teacher-retirement-system/",
|
"url": "https://fantasyscotus.net/user-predictions/case/goldman-sachs-group-inc-v-arkansas-teacher-retirement-system/",
|
||||||
"platform": "FantasySCOTUS",
|
"platform": "FantasySCOTUS",
|
||||||
"description": "100.00% (3 out of 3) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
"description": "80.00% (4 out of 5) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 1,
|
"probability": 0.8,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0,
|
"probability": 0.19999999999999996,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": 3,
|
"numforecasts": 5,
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "In TransUnion LLC v. Ramirez, the SCOTUS will affirm the lower court's decision",
|
"title": "In TransUnion LLC v. Ramirez, the SCOTUS will affirm the lower court's decision",
|
||||||
"url": "https://fantasyscotus.net/user-predictions/case/transunion-llc-v-ramirez/",
|
"url": "https://fantasyscotus.net/user-predictions/case/transunion-llc-v-ramirez/",
|
||||||
"platform": "FantasySCOTUS",
|
"platform": "FantasySCOTUS",
|
||||||
"description": "0.00% (0 out of 2) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
"description": "0.00% (0 out of 3) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
|
@ -516,7 +516,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": 2,
|
"numforecasts": 3,
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -583,7 +583,7 @@
|
||||||
"title": "In Sanchez v. Mayorkas, the SCOTUS will affirm the lower court's decision",
|
"title": "In Sanchez v. Mayorkas, the SCOTUS will affirm the lower court's decision",
|
||||||
"url": "https://fantasyscotus.net/user-predictions/case/sanchez-v-mayorkas/",
|
"url": "https://fantasyscotus.net/user-predictions/case/sanchez-v-mayorkas/",
|
||||||
"platform": "FantasySCOTUS",
|
"platform": "FantasySCOTUS",
|
||||||
"description": "0.00% (0 out of 2) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
"description": "0.00% (0 out of 3) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
|
@ -596,7 +596,7 @@
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": 2,
|
"numforecasts": 3,
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
|
@ -17,17 +17,17 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 5.0% but less than 6.0%",
|
"name": "More than 5.0% but less than 6.0%",
|
||||||
"probability": 0.27,
|
"probability": 0.22,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 6.0% and 7.0%, inclusive",
|
"name": "Between 6.0% and 7.0%, inclusive",
|
||||||
"probability": 0.52,
|
"probability": 0.56,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 7.0%",
|
"name": "More than 7.0%",
|
||||||
"probability": 0.2,
|
"probability": 0.21,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -51,12 +51,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 24 million but less than 27 million barrels per day",
|
"name": "More than 24 million but less than 27 million barrels per day",
|
||||||
"probability": 0.47,
|
"probability": 0.48,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 27 million and 30 million barrels per day, inclusive",
|
"name": "Between 27 million and 30 million barrels per day, inclusive",
|
||||||
"probability": 0.5,
|
"probability": 0.49,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -75,12 +75,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.02,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.98,
|
"probability": 0.99,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -94,17 +94,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Before 1 July 2021",
|
"name": "Before 1 July 2021",
|
||||||
"probability": 0.96,
|
"probability": 0.99,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 July 2021 and 31 August 2021",
|
"name": "Between 1 July 2021 and 31 August 2021",
|
||||||
"probability": 0.03,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 September 2021 and 31 October 2021",
|
"name": "Between 1 September 2021 and 31 October 2021",
|
||||||
"probability": 0.01,
|
"probability": 0,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -133,22 +133,22 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 200 million and 500 million, inclusive",
|
"name": "Between 200 million and 500 million, inclusive",
|
||||||
"probability": 0,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 500 million but fewer than 960 million",
|
"name": "More than 500 million but fewer than 960 million",
|
||||||
"probability": 0.16,
|
"probability": 0.12,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 960 million and 1.6 billion, inclusive",
|
"name": "Between 960 million and 1.6 billion, inclusive",
|
||||||
"probability": 0.78,
|
"probability": 0.77,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 1.6 billion",
|
"name": "More than 1.6 billion",
|
||||||
"probability": 0.06,
|
"probability": 0.1,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -166,12 +166,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 April 2021 and 30 June 2021",
|
"name": "Between 1 April 2021 and 30 June 2021",
|
||||||
"probability": 0.98,
|
"probability": 0.99,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 July 2021 and 30 September 2021",
|
"name": "Between 1 July 2021 and 30 September 2021",
|
||||||
"probability": 0.02,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -200,17 +200,17 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 February 2021 and 31 March 2021",
|
"name": "Between 1 February 2021 and 31 March 2021",
|
||||||
"probability": 0.85,
|
"probability": 0.91,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 April 2021 and 31 May 2021",
|
"name": "Between 1 April 2021 and 31 May 2021",
|
||||||
"probability": 0.14,
|
"probability": 0.09,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 June 2021 and 31 July 2021",
|
"name": "Between 1 June 2021 and 31 July 2021",
|
||||||
"probability": 0.01,
|
"probability": 0,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -234,12 +234,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 March 2021 and 30 April 2021",
|
"name": "Between 1 March 2021 and 30 April 2021",
|
||||||
"probability": 0.97,
|
"probability": 0.98,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 May 2021 and 30 June 2021",
|
"name": "Between 1 May 2021 and 30 June 2021",
|
||||||
"probability": 0.03,
|
"probability": 0.02,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -259,7 +259,7 @@
|
||||||
"title": "As of 31 March 2021, what will be the highest seven-day median of COVID-19 confirmed new cases in WHO's Europe Region?</a>",
|
"title": "As of 31 March 2021, what will be the highest seven-day median of COVID-19 confirmed new cases in WHO's Europe Region?</a>",
|
||||||
"url": "https://goodjudgment.io/superforecasts/",
|
"url": "https://goodjudgment.io/superforecasts/",
|
||||||
"platform": "Good Judgment",
|
"platform": "Good Judgment",
|
||||||
"description": "The status of the COVID-19 outbreak through spring 2021 is an open question, as \"<a href=\"https://apnews.com/article/virus-outbreak-pandemics-italy-madrid-eastern-europe-159a68a460337948d25281c153994c70\" target=\"_blank\">next waves</a>\" are experienced in the fall and winter. The outcome will be determined using the World Health Organization's Coronavirus Disease (COVID-19) <a href=\"https://covid19.who.int/\" target=\"_blank\">Dashboard</a>. The value for a given day will come from the data available on the WHO dashboard at close of business of the day in question. If a data point is not available at that time, the first posting on the WHO dashboard thereafter will be used. Any subsequent revisions to the data are immaterial. To simplify the process, the data will be captured and posted <a href=\"https://docs.google.com/spreadsheets/d/1szi8i948AJRAqlYG82NhcW0qDMuLm6UlAyW_AbFsQ_0/\" target=\"_blank\">here</a> each day.",
|
"description": "Closed 28 March 2021; resolved as \"B: Between 275,000 and 300,000, inclusive\" The status of the COVID-19 outbreak through spring 2021 is an open question, as \"<a href=\"https://apnews.com/article/virus-outbreak-pandemics-italy-madrid-eastern-europe-159a68a460337948d25281c153994c70\" target=\"_blank\">next waves</a>\" are experienced in the fall and winter. The outcome will be determined using the World Health Organization's Coronavirus Disease (COVID-19) <a href=\"https://covid19.who.int/\" target=\"_blank\">Dashboard</a>. The value for a given day will come from the data available on the WHO dashboard at close of business of the day in question. If a data point is not available at that time, the first posting on the WHO dashboard thereafter will be used. Any subsequent revisions to the data are immaterial. To simplify the process, the data will be captured and posted <a href=\"https://docs.google.com/spreadsheets/d/1szi8i948AJRAqlYG82NhcW0qDMuLm6UlAyW_AbFsQ_0/\" target=\"_blank\">here</a> each day.",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 275,000",
|
"name": "Less than 275,000",
|
||||||
|
@ -335,12 +335,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 10% but less than 20%",
|
"name": "More than 10% but less than 20%",
|
||||||
"probability": 0.76,
|
"probability": 0.78,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 20% and 30%, inclusive",
|
"name": "Between 20% and 30%, inclusive",
|
||||||
"probability": 0.22,
|
"probability": 0.2,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -383,12 +383,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 23%",
|
"name": "Less than 23%",
|
||||||
"probability": 0.27,
|
"probability": 0.26,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 23% and 27%, inclusive",
|
"name": "Between 23% and 27%, inclusive",
|
||||||
"probability": 0.72,
|
"probability": 0.73,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -412,7 +412,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Lower by between 4% and 8%, inclusive ",
|
"name": "Lower by between 4% and 8%, inclusive ",
|
||||||
"probability": 0,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -422,12 +422,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Higher by between 0% and 4%, inclusive",
|
"name": "Higher by between 0% and 4%, inclusive",
|
||||||
"probability": 0.85,
|
"probability": 0.81,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Higher by more than 4%",
|
"name": "Higher by more than 4%",
|
||||||
"probability": 0.1,
|
"probability": 0.13,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -446,12 +446,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Higher by between 0% and 100%",
|
"name": "Higher by between 0% and 100%",
|
||||||
"probability": 0.41,
|
"probability": 0.4,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Higher by more than 100%",
|
"name": "Higher by more than 100%",
|
||||||
"probability": 0.58,
|
"probability": 0.59,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -470,12 +470,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 April 2021 and 30 June 2021",
|
"name": "Between 1 April 2021 and 30 June 2021",
|
||||||
"probability": 0.98,
|
"probability": 0.99,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 1 July 2021 and 30 September 2021",
|
"name": "Between 1 July 2021 and 30 September 2021",
|
||||||
"probability": 0.02,
|
"probability": 0.01,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -504,12 +504,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "More than 10% but less than 20%",
|
"name": "More than 10% but less than 20%",
|
||||||
"probability": 0.76,
|
"probability": 0.78,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Between 20% and 30%, inclusive",
|
"name": "Between 20% and 30%, inclusive",
|
||||||
"probability": 0.22,
|
"probability": 0.2,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -25,12 +25,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.69,
|
"probability": 0.65,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.31,
|
"probability": 0.35,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -82,57 +82,57 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Xavier Bertrand",
|
"name": "Xavier Bertrand",
|
||||||
"probability": 0.04950495049504951,
|
"probability": 0.03883495145631068,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Pierre de Villiers",
|
"name": "Pierre de Villiers",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.00970873786407767,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Anne Hidalgo",
|
"name": "Anne Hidalgo",
|
||||||
"probability": 0.0297029702970297,
|
"probability": 0.02912621359223301,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Yannick Jadot",
|
"name": "Yannick Jadot",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.00970873786407767,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Marine Le Pen",
|
"name": "Marine Le Pen",
|
||||||
"probability": 0.12871287128712872,
|
"probability": 0.1262135922330097,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Emmanuel Macron",
|
"name": "Emmanuel Macron",
|
||||||
"probability": 0.5445544554455446,
|
"probability": 0.5728155339805825,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Jean-Luc Mélenchon",
|
"name": "Jean-Luc Mélenchon",
|
||||||
"probability": 0.0297029702970297,
|
"probability": 0.01941747572815534,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Valérie Pécresse",
|
"name": "Valérie Pécresse",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.00970873786407767,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Eric Piolle",
|
"name": "Eric Piolle",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.00970873786407767,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Another woman",
|
"name": "Another woman",
|
||||||
"probability": 0.0297029702970297,
|
"probability": 0.02912621359223301,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Another man",
|
"name": "Another man",
|
||||||
"probability": 0.1485148514851485,
|
"probability": 0.14563106796116507,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -146,22 +146,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Macron and Le Pen",
|
"name": "Macron and Le Pen",
|
||||||
"probability": 0.6435643564356436,
|
"probability": 0.712871287128713,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Macron, but not Le Pen",
|
"name": "Macron, but not Le Pen",
|
||||||
"probability": 0.1089108910891089,
|
"probability": 0.07920792079207921,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Le Pen, but not Macron",
|
"name": "Le Pen, but not Macron",
|
||||||
"probability": 0.20792079207920794,
|
"probability": 0.17821782178217824,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Neither of them",
|
"name": "Neither of them",
|
||||||
"probability": 0.039603960396039604,
|
"probability": 0.0297029702970297,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -194,17 +194,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "In June, 2021 (as planned)",
|
"name": "In June, 2021 (as planned)",
|
||||||
"probability": 0.7,
|
"probability": 0.7142857142857143,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Later in 2021",
|
"name": "Later in 2021",
|
||||||
"probability": 0.21,
|
"probability": 0.2,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Not in 2021",
|
"name": "Not in 2021",
|
||||||
"probability": 0.09,
|
"probability": 0.08571428571428572,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -257,32 +257,32 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "March 2021",
|
"name": "March 2021",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.008547008547008546,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Maybe later",
|
"name": "Maybe later",
|
||||||
"probability": 0.26,
|
"probability": 0.13,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "April 2021",
|
"name": "April 2021",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.017094017094017092,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "May 2021",
|
"name": "May 2021",
|
||||||
"probability": 0.06930693069306931,
|
"probability": 0.2222222222222222,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "June 2021",
|
"name": "June 2021",
|
||||||
"probability": 0.2178217821782178,
|
"probability": 0.28205128205128205,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Maybe after June 2021",
|
"name": "Maybe after June 2021",
|
||||||
"probability": 0.693069306930693,
|
"probability": 0.47008547008547,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -296,27 +296,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "In May or earlier",
|
"name": "In May or earlier",
|
||||||
"probability": 0.019801980198019802,
|
"probability": 0.02,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in June (government goal)",
|
"name": "in June (government goal)",
|
||||||
"probability": 0.44554455445544555,
|
"probability": 0.41,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in July",
|
"name": "in July",
|
||||||
"probability": 0.3564356435643565,
|
"probability": 0.32,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in August",
|
"name": "in August",
|
||||||
"probability": 0.07920792079207921,
|
"probability": 0.13,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Maybe later",
|
"name": "Maybe later",
|
||||||
"probability": 0.09900990099009901,
|
"probability": 0.12,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -330,12 +330,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.1,
|
"probability": 0.08,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.9,
|
"probability": 0.92,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -349,22 +349,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Saad-Eddine El Othmani",
|
"name": "Saad-Eddine El Othmani",
|
||||||
"probability": 0.08,
|
"probability": 0.07920792079207921,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Abdelilah Benkirane",
|
"name": "Abdelilah Benkirane",
|
||||||
"probability": 0.07,
|
"probability": 0.06930693069306931,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Someone else from PJD",
|
"name": "Someone else from PJD",
|
||||||
"probability": 0.05,
|
"probability": 0.04950495049504951,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Someone else not from PJD",
|
"name": "Someone else not from PJD",
|
||||||
"probability": 0.8,
|
"probability": 0.8019801980198019,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -421,12 +421,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.44360902255639095,
|
"probability": 0.44696969696969696,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.556390977443609,
|
"probability": 0.5530303030303031,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -445,22 +445,22 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Guy Brice Parfait Kolélas",
|
"name": "Guy Brice Parfait Kolélas",
|
||||||
"probability": 0,
|
"probability": 1,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Mathias Dzon",
|
"name": "Mathias Dzon",
|
||||||
"probability": 0,
|
"probability": 1,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Someone else",
|
"name": "Someone else",
|
||||||
"probability": 0,
|
"probability": 1,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No election in 2021",
|
"name": "No election in 2021",
|
||||||
"probability": 0,
|
"probability": 1,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -547,27 +547,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Q1, 2021 (or before)",
|
"name": "Q1, 2021 (or before)",
|
||||||
"probability": 0.020618556701030924,
|
"probability": 0.01941747572815534,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Q2, 2021",
|
"name": "Q2, 2021",
|
||||||
"probability": 0.28865979381443296,
|
"probability": 0.3300970873786408,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Q3, 2021",
|
"name": "Q3, 2021",
|
||||||
"probability": 0.37113402061855666,
|
"probability": 0.34951456310679613,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Q4, 2021",
|
"name": "Q4, 2021",
|
||||||
"probability": 0.17525773195876287,
|
"probability": 0.1650485436893204,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Maybe later",
|
"name": "Maybe later",
|
||||||
"probability": 0.14432989690721648,
|
"probability": 0.1359223300970874,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -629,32 +629,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Marcus Söder (CSU)",
|
"name": "Marcus Söder (CSU)",
|
||||||
"probability": 0.26732673267326734,
|
"probability": 0.32291666666666674,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Armin Laschet (CDU)",
|
"name": "Armin Laschet (CDU)",
|
||||||
"probability": 0.5346534653465347,
|
"probability": 0.46875,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Another member of CDU/CSU",
|
"name": "Another member of CDU/CSU",
|
||||||
"probability": 0.039603960396039604,
|
"probability": 0.04166666666666667,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "A member of SPD",
|
"name": "A member of SPD",
|
||||||
"probability": 0.04950495049504951,
|
"probability": 0.05208333333333334,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "A member of the Green party",
|
"name": "A member of the Green party",
|
||||||
"probability": 0.09900990099009901,
|
"probability": 0.10416666666666669,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Someone else",
|
"name": "Someone else",
|
||||||
"probability": 0.009900990099009901,
|
"probability": 0.010416666666666668,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -668,27 +668,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "in Q1, 2021",
|
"name": "in Q1, 2021",
|
||||||
"probability": 0.051948051948051945,
|
"probability": 0.03296703296703297,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in Q2, 2021",
|
"name": "in Q2, 2021",
|
||||||
"probability": 0.1948051948051948,
|
"probability": 0.3296703296703297,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in Q3, 2021",
|
"name": "in Q3, 2021",
|
||||||
"probability": 0.2207792207792208,
|
"probability": 0.18681318681318682,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "in Q4, 2021",
|
"name": "in Q4, 2021",
|
||||||
"probability": 0.24675324675324675,
|
"probability": 0.2087912087912088,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Perhaps later",
|
"name": "Perhaps later",
|
||||||
"probability": 0.2857142857142857,
|
"probability": 0.2417582417582418,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -702,22 +702,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "USA",
|
"name": "USA",
|
||||||
"probability": 0.028571428571428567,
|
"probability": 0.03,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "France",
|
"name": "France",
|
||||||
"probability": 0.5142857142857142,
|
"probability": 0.54,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Germany",
|
"name": "Germany",
|
||||||
"probability": 0.32380952380952377,
|
"probability": 0.35,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "United Kingdom",
|
"name": "United Kingdom",
|
||||||
"probability": 0.13333333333333333,
|
"probability": 0.08,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -731,22 +731,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "USA",
|
"name": "USA",
|
||||||
"probability": 0.8854166666666667,
|
"probability": 0.8712871287128712,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "France",
|
"name": "France",
|
||||||
"probability": 0.04166666666666667,
|
"probability": 0.039603960396039604,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Germany",
|
"name": "Germany",
|
||||||
"probability": 0.020833333333333336,
|
"probability": 0.0297029702970297,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "United Kingdom",
|
"name": "United Kingdom",
|
||||||
"probability": 0.05208333333333334,
|
"probability": 0.0594059405940594,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -798,12 +798,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.97,
|
"probability": 0.95,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.03,
|
"probability": 0.05,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
|
@ -871,37 +871,37 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Markus Söder",
|
"name": "Markus Söder",
|
||||||
"probability": 0.39833716101653427,
|
"probability": 0.35524640286087616,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Olaf Scholz",
|
"name": "Olaf Scholz",
|
||||||
"probability": 0.04267898153748581,
|
"probability": 0.034158307967391936,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Annalena Baerbock",
|
"name": "Annalena Baerbock",
|
||||||
"probability": 0.05272109484042366,
|
"probability": 0.0807378188320173,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Alice Weidel",
|
"name": "Alice Weidel",
|
||||||
"probability": 0.008873847646407942,
|
"probability": 0.008793227793586043,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Jens Spahn",
|
"name": "Jens Spahn",
|
||||||
"probability": 0.017573698280141218,
|
"probability": 0.017414039355925302,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Armin Laschet",
|
"name": "Armin Laschet",
|
||||||
"probability": 0.39833716101653427,
|
"probability": 0.42291238435818584,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Robert Habeck",
|
"name": "Robert Habeck",
|
||||||
"probability": 0.08147805566247292,
|
"probability": 0.0807378188320173,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1824,11 +1824,6 @@
|
||||||
"probability": 0.017344956233270977,
|
"probability": 0.017344956233270977,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"name": "Northern Independence Party (bets void if not registered as a party in time)",
|
|
||||||
"probability": 0.026017434349906464,
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"name": "SDP",
|
"name": "SDP",
|
||||||
"probability": 0.004400959044262785,
|
"probability": 0.004400959044262785,
|
||||||
|
@ -1858,6 +1853,39 @@
|
||||||
"name": "Sam Lee (Ind)",
|
"name": "Sam Lee (Ind)",
|
||||||
"probability": 0.004400959044262785,
|
"probability": 0.004400959044262785,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Thelma Walker (either as Ind or NIP)",
|
||||||
|
"probability": 0.026017434349906464,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Hartlepool By-election: Thelma Walker Vote Share",
|
||||||
|
"url": "https://sports.ladbrokes.com/sport/politics/outrights",
|
||||||
|
"platform": "Ladbrokes",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Under 5%",
|
||||||
|
"probability": 0.5433431584928442,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "5-10%",
|
||||||
|
"probability": 0.3024610248943499,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "10-20%",
|
||||||
|
"probability": 0.10082034163144997,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Over 20%",
|
||||||
|
"probability": 0.05337547498135587,
|
||||||
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"stars": 2
|
"stars": 2
|
||||||
|
@ -2046,17 +2074,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "2021",
|
"name": "2021",
|
||||||
"probability": 0.15682281059063136,
|
"probability": 0.15909090909090906,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "2022",
|
"name": "2022",
|
||||||
"probability": 0.1710794297352342,
|
"probability": 0.15909090909090906,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "2023 or later",
|
"name": "2023 or later",
|
||||||
"probability": 0.6720977596741344,
|
"probability": 0.6818181818181818,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -3409,6 +3437,24 @@
|
||||||
],
|
],
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"title": "Boris Johnson to be replaced as PM before end 2022",
|
||||||
|
"url": "https://sports.ladbrokes.com/sport/politics/outrights",
|
||||||
|
"platform": "LadBrokes",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": 0.2857142857142857,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": 0.7142857142857143,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"title": "Piers Morgan to become PM before 2040",
|
"title": "Piers Morgan to become PM before 2040",
|
||||||
"url": "https://sports.ladbrokes.com/sport/politics/outrights",
|
"url": "https://sports.ladbrokes.com/sport/politics/outrights",
|
||||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
25820
data/metaforecasts.json
25820
data/metaforecasts.json
File diff suppressed because one or more lines are too long
|
@ -1,49 +1,4 @@
|
||||||
[
|
[
|
||||||
{
|
|
||||||
"title": "Will Texas, Florida, or California have the highest 7-day daily average of COVID-19 cases on April 15, 2021?",
|
|
||||||
"url": "https://polymarket.com/market/will-texas-florida-or-california-have-the-highest-7-day-daily-average-of-covid-19-cases-on-april-15-2021",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on which of the following states will have the highest 7-day daily average of COVID-19 cases on April 15, 2021, 12:00 PM ET: Texas, Florida, or California. The resolution source for this Market will be the New York Times’ U.S. state-by-state COVID-19 case count dashboard (https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html#states). This market will resolve to whichever state out of Texas, Florida, or California has the highest 7-day daily average of COVID-19 cases on the resolution date. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC). \n",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "Texas",
|
|
||||||
"probability": "0.09471882941566854900783987701471025",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Florida",
|
|
||||||
"probability": "0.8862514475368737605999119046633115",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "California",
|
|
||||||
"probability": "0.01902972304745769039224821832197825",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "276",
|
|
||||||
"stars": 3
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"title": "Will AstraZeneca's COVID-19 vaccine receive FDA approval or Emergency Use Authorization (EUA) by May 1, 2021?",
|
|
||||||
"url": "https://polymarket.com/market/will-astrazenecas-covid-19-vaccine-receive-fda-approval-or-emergency-use-authorization-eua-by-may-1-2021",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on whether AstraZeneca’s COVID-19 vaccine will receive regulatory approval in the USA in the form of either FDA approval OR Emergency Use Authorization, whichever comes first. This market will resolve to “Yes” if AstraZeneca’s COVID-19 vaccine receives FDA approval or EUA prior to the resolution date, May 1, 2021, 12:00 PM ET, and \"No\" otherwise.\n\nThis market will be resolved in good faith, according to the FDA list of licensed vaccines (https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states), the FDA EUA list (https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization), as well as any other resolution source deemed appropriate by the Markets Integrity Committee (MIC).",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "Yes",
|
|
||||||
"probability": "0.3325426078486210391403659153611369",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "No",
|
|
||||||
"probability": "0.6674573921513789608596340846388631",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "98",
|
|
||||||
"stars": 4
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"title": "Will the US have fewer than 35,000 new COVID-19 cases on any day before April 7, 2021?",
|
"title": "Will the US have fewer than 35,000 new COVID-19 cases on any day before April 7, 2021?",
|
||||||
"url": "https://polymarket.com/market/will-the-us-have-fewer-than-35000-new-covid-19-cases-on-any-day-before-april-7-2021",
|
"url": "https://polymarket.com/market/will-the-us-have-fewer-than-35000-new-covid-19-cases-on-any-day-before-april-7-2021",
|
||||||
|
@ -52,16 +7,36 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.1718025008310863946779364090448349",
|
"probability": "0.07753824631498304305713109847982703",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.8281974991689136053220635909551651",
|
"probability": "0.922461753685016956942868901520173",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "451",
|
"numforecasts": "504",
|
||||||
|
"stars": 3
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will Joe Biden's disapproval rating be 40% or higher on April 7?",
|
||||||
|
"url": "https://polymarket.com/market/will-joe-bidens-disapproval-rating-be-40-or-higher-on-april-7",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on whether Joe Biden's disapproval rating will be 40% or higher on April 7, 2021. The resolution source will be FiveThirtyEight's approval rating poll aggregator, indicated by the orange trend line here, https://projects.fivethirtyeight.com/biden-approval-rating/. Changes in the methodology by which FiveThirtyEight calculates the disapproval rating will have no bearing on the resolution of this market. If for any reason the resolution source is unavailable on the resolution date, resolution will be delayed up to 48 hours. If still unavailable following that delay, this market will resolve to 50/50. If Joe Biden is not President on the resolution date, this market will resolve according to the most recent available disapproval rating. The resolution date for this market will be on April 8, 2021 at 12:00 PM ET according to data published for the day of April 7, 2021. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": "0.4599317644432323598775687301012367",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": "0.5400682355567676401224312698987633",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"numforecasts": "70",
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -72,57 +47,72 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.8978542963687510509806282313940195",
|
"probability": "0.8974107967751541143208149317438613",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.1021457036312489490193717686059805",
|
"probability": "0.1025892032248458856791850682561387",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "797",
|
"numforecasts": "798",
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will the Ever Given be dislodged from the Suez Canal by March 30?",
|
"title": "Will Donald Trump be President of the USA on July 31, 2021?",
|
||||||
"url": "https://polymarket.com/market/will-the-ever-given-be-dislodged-from-the-suez-canal-by-march-30",
|
"url": "https://polymarket.com/market/will-donald-trump-be-president-of-the-usa-on-july-31-2021",
|
||||||
"platform": "PolyMarket",
|
"platform": "PolyMarket",
|
||||||
"description": "This is a market on whether the Ever Given container ship (IMO: 9811000, MMSI 353136000) will be dislodged from the Suez Canal by March 30, 2021, 12:00 PM ET. For the purpose of this market, dislodged from the Suez Canal will mean that the Ever Given has a latitude higher than 30.03000 N (i.e. be at least half a mile above where it got stuck) or lower than 30.01000 N degrees (i.e. be at least half a mile below where it got stuck), by the resolution date, March 30, 2021, 12:00 PM ET. The resolution source for this for this market will be the Ever Green’s latitude and longitude coordinates, as tracked by Vessel Finder and displayed in their “Position & Voyage Data” table (https://www.vesselfinder.com/vessels/EVER-GIVEN-IMO-9811000-MMSI-353136000).",
|
"description": "This is a market on if Donald Trump will be President of the United States on July 31, 2021, 11:59 PM ET. This market will resolve to “Yes“ if, on the resolution date, Donald Trump is the current President of the United States, officially substantiated by official US government sources, like the links provided as the resolution source. If, for any reason, Donald Trump is not the sitting President of the United States on that date, this market will resolve to “No\". The resolution sources are: 1. https://www.loc.gov/rr/print/list/057_chron.html , 2. https://history.house.gov/Institution/Presidents-Coinciding/Presidents-Coinciding/ and 3. https://www.whitehouse.gov/. \n\nIf any of these 3 sources list Donald Trump officially as the current sitting president on the resolution date, this market will resolve to \"Yes\". In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n\n\n\n",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.4698896746217403382421058389612625",
|
"probability": "0.01394232389372196757070549823602875",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.5301103253782596617578941610387375",
|
"probability": "0.9860576761062780324292945017639713",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "383",
|
"numforecasts": "15",
|
||||||
"stars": 4
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will Joe Biden's disapproval rating be 40% or higher on April 7?",
|
"title": "What will monthly NFT trading volume be on April 13, 2021?",
|
||||||
"url": "https://polymarket.com/market/will-joe-bidens-disapproval-rating-be-40-or-higher-on-april-7",
|
"url": "https://polymarket.com/market/what-will-monthly-nft-trading-volume-be-on-april-13-2021-1",
|
||||||
"platform": "PolyMarket",
|
"platform": "PolyMarket",
|
||||||
"description": "This is a market on whether Joe Biden's disapproval rating will be 40% or higher on April 7, 2021. The resolution source will be FiveThirtyEight's approval rating poll aggregator, indicated by the orange trend line here, https://projects.fivethirtyeight.com/biden-approval-rating/. Changes in the methodology by which FiveThirtyEight calculates the disapproval rating will have no bearing on the resolution of this market. If for any reason the resolution source is unavailable on the resolution date, resolution will be delayed up to 48 hours. If still unavailable following that delay, this market will resolve to 50/50. If Joe Biden is not President on the resolution date, this market will resolve according to the most recent available disapproval rating. The resolution date for this market will be on April 8, 2021 at 12:00 PM ET according to data published for the day of April 7, 2021. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC).",
|
"description": "This is a market on what the monthly trading volume will be for non-fungible-tokens (NFTs) on April 13, 2021. The resolution source for this market will be Coinranking’s aggregation of 30-day NFT trading volume, as displayed in USD by the resolution source, https://coinranking.com/nfts. The total trading volume (in the last 30 days) as listed by Coinranking will be checked at 12:00 PM ET on April 13, 2021. Whichever bracket the total trading volume falls into at that time will be the bracket that this market resolves to. Data will be rounded down to the nearest million dollars for the resolution of this market (e.g. 50.3, 50.5, 50.7 million dollars are all rounded down to 50 million dollars). In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "$80M or Less",
|
||||||
"probability": "0.4526971438909513404307955024326983",
|
"probability": "0.05744360602032953362501417765827628",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "$81-105M",
|
||||||
"probability": "0.5473028561090486595692044975673017",
|
"probability": "0.6714313199989959113997850001650252",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "$106-120M",
|
||||||
|
"probability": "0.1558340346479539708610918819061469",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "$121-135M",
|
||||||
|
"probability": "0.06367479538279264655713628485976061",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "$136M or More",
|
||||||
|
"probability": "0.05161624394992793755697265541079074",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "57",
|
"numforecasts": "203",
|
||||||
"stars": 4
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will weekly jobless claims exceed 650K for the week ending on April 3?",
|
"title": "Will weekly jobless claims exceed 650K for the week ending on April 3?",
|
||||||
|
@ -132,37 +122,48 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.4426875615958327161228189497385512",
|
"probability": "0.4061604608970735746980251586486453",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.5573124384041672838771810502614488",
|
"probability": "0.5938395391029264253019748413513547",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "91",
|
"numforecasts": "94",
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will the federal minimum wage be $9.50 per hour or higher by April 1?",
|
"title": "Will the federal minimum wage be $9.50 per hour or higher by April 1?",
|
||||||
"url": "https://polymarket.com/market/will-the-federal-minimum-wage-be-9-50-per-hour-or-higher-by-april-1-1",
|
"url": "https://polymarket.com/market/will-the-federal-minimum-wage-be-9-50-per-hour-or-higher-by-april-1-1",
|
||||||
"platform": "PolyMarket",
|
"address": "0x36BB6f09327d1A7D0930668345655d6A6e3c6b20",
|
||||||
"description": "This is a market on if the federal minimum wage will be $9.50 per hour or higher by April 1, 12:00pm EST. This market will resolve to \"Yes\" if the federal minimum wage in effect for covered non-exempt employees is $9.50 or more per hour at any point prior to the resolution date, and \"No\" otherwise. The primary resolution source for this market will be the U.S. Department of Labor's website, https://www.dol.gov/.",
|
"description": "This is a market on if the federal minimum wage will be $9.50 per hour or higher by April 1, 12:00pm EST. This market will resolve to \"Yes\" if the federal minimum wage in effect for covered non-exempt employees is $9.50 or more per hour at any point prior to the resolution date, and \"No\" otherwise. The primary resolution source for this market will be the U.S. Department of Labor's website, https://www.dol.gov/.",
|
||||||
|
"outcomes": [
|
||||||
|
"Yes",
|
||||||
|
"No"
|
||||||
|
],
|
||||||
|
"options": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will Bitcoin ($BTC) be above $55k on April 1, 2021?",
|
||||||
|
"url": "https://polymarket.com/market/will-bitcoin-btc-be-above-55k-on-april-1-2021",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on if the USD price of Bitcoin $BTC will be above $55000 on April 1, 2021, 12:00 PM ET, according to coinmarketcap.com/currencies/bitcoin/. This market will resolve to “Yes“ if BTC is trading above $55000 according to Coinmarketcap on the resolution date, and “No“ otherwise. If price data is temporarily unavailable on Coinmarketcap at the time of resolution, coingecko.com/en/coins/bitcoin will instead be referenced. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n\n",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.0007833069340194859579063580919656911",
|
"probability": "0.811137805040424106412252281387405",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9992166930659805140420936419080343",
|
"probability": "0.188862194959575893587747718612595",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "187",
|
"numforecasts": "3177",
|
||||||
"stars": 3
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will 100 million people have received a dose of an approved COVID-19 vaccine in the US by April 1, 2021?",
|
"title": "Will 100 million people have received a dose of an approved COVID-19 vaccine in the US by April 1, 2021?",
|
||||||
|
@ -172,17 +173,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.11325563039183722103275617002183",
|
"probability": "0.07304455174120395584463620390808104",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.88674436960816277896724382997817",
|
"probability": "0.926955448258796044155363796091919",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "7773",
|
"numforecasts": "8243",
|
||||||
"stars": 4
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will Donald Trump be President of the USA on March 31, 2021?",
|
"title": "Will Donald Trump be President of the USA on March 31, 2021?",
|
||||||
|
@ -192,16 +193,36 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.0005773167438572659616369798800062558",
|
"probability": "0.0002594014467534253739238797362305842",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9994226832561427340383630201199937",
|
"probability": "0.9997405985532465746260761202637694",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "4284",
|
"numforecasts": "4314",
|
||||||
|
"stars": 3
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will Joe Biden be President of the USA on June 30, 2021?",
|
||||||
|
"url": "https://polymarket.com/market/will-joe-biden-be-president-of-the-usa-on-june-30-2021",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on if Joe Biden will be President of the United States on June 30, 2021, 11:59 PM ET. This market will resolve to “Yes“ if, on the resolution date, Joe Biden is listed as being the current President of the United States according to official US government sources, like the link provided as the resolution source. If, for any reason, Joe Biden is not the sitting President of the United States on that date, this market will resolve to “No“. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC). The resolution source for this market will be the official website of the United States President, https://www.whitehouse.gov/\n\n",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": "0.9514096993620200431360981712878928",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": "0.04859030063797995686390182871210717",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"numforecasts": "4",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -212,16 +233,16 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.0785186989419276422486486868372132",
|
"probability": "0.07590406992189588515175078805599503",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9214813010580723577513513131627868",
|
"probability": "0.924095930078104114848249211944005",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "399",
|
"numforecasts": "411",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -232,16 +253,16 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.0463958172809963982245937485905163",
|
"probability": "0.04200290899238056378530487686460393",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9536041827190036017754062514094837",
|
"probability": "0.9579970910076194362146951231353961",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "85",
|
"numforecasts": "89",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -252,16 +273,16 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.01556978274231434901849274397707455",
|
"probability": "0.02304787940068400388231862024485495",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9844302172576856509815072560229254",
|
"probability": "0.9769521205993159961176813797551451",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "720",
|
"numforecasts": "726",
|
||||||
"stars": 3
|
"stars": 3
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -272,36 +293,16 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.1199447741739855272384936981505642",
|
"probability": "0.1283821729293469028524210423415517",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.8800552258260144727615063018494358",
|
"probability": "0.8716178270706530971475789576584483",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "73",
|
"numforecasts": "75",
|
||||||
"stars": 4
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"title": "Will Bitcoin ($BTC) be above $55k on April 1, 2021?",
|
|
||||||
"url": "https://polymarket.com/market/will-bitcoin-btc-be-above-55k-on-april-1-2021",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on if the USD price of Bitcoin $BTC will be above $55000 on April 1, 2021, 12:00 PM ET, according to coinmarketcap.com/currencies/bitcoin/. This market will resolve to “Yes“ if BTC is trading above $55000 according to Coinmarketcap on the resolution date, and “No“ otherwise. If price data is temporarily unavailable on Coinmarketcap at the time of resolution, coingecko.com/en/coins/bitcoin will instead be referenced. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n\n",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "Yes",
|
|
||||||
"probability": "0.6720667278394123702971286257476096",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "No",
|
|
||||||
"probability": "0.3279332721605876297028713742523904",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "2618",
|
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -312,53 +313,18 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.01019374154946546974525356766539572",
|
"probability": "0.001584751006425928853977388179070808",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9898062584505345302547464323346043",
|
"probability": "0.9984152489935740711460226118209292",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "87",
|
"numforecasts": "102",
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"title": "What will monthly NFT trading volume be on April 13, 2021?",
|
|
||||||
"url": "https://polymarket.com/market/what-will-monthly-nft-trading-volume-be-on-april-13-2021-1",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on what the monthly trading volume will be for non-fungible-tokens (NFTs) on April 13, 2021. The resolution source for this market will be Coinranking’s aggregation of 30-day NFT trading volume, as displayed in USD by the resolution source, https://coinranking.com/nfts. The total trading volume (in the last 30 days) as listed by Coinranking will be checked at 12:00 PM ET on April 13, 2021. Whichever bracket the total trading volume falls into at that time will be the bracket that this market resolves to. Data will be rounded down to the nearest million dollars for the resolution of this market (e.g. 50.3, 50.5, 50.7 million dollars are all rounded down to 50 million dollars). In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "$80M or Less",
|
|
||||||
"probability": "0.09311545717991747005375998978049056",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "$81-105M",
|
|
||||||
"probability": "0.4546994257057043229946384853760889",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "$106-120M",
|
|
||||||
"probability": "0.2157457711612491388147202046582125",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "$121-135M",
|
|
||||||
"probability": "0.1199694628723149212877599749935941",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "$136M or More",
|
|
||||||
"probability": "0.1164698830808141468491213451916138",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "144",
|
|
||||||
"stars": 3
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"title": "Will American mask usage be 75% or higher on April 14th, 2021?",
|
"title": "Will American mask usage be 75% or higher on April 14th, 2021?",
|
||||||
"url": "https://polymarket.com/market/will-american-mask-usage-be-75-or-higher-on-april-14th-2021",
|
"url": "https://polymarket.com/market/will-american-mask-usage-be-75-or-higher-on-april-14th-2021",
|
||||||
|
@ -367,76 +333,36 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.1645269193840114258022893873779148",
|
"probability": "0.1661397634672417208420309135621839",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.8354730806159885741977106126220852",
|
"probability": "0.8338602365327582791579690864378161",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "78",
|
"numforecasts": "87",
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Will Donald Trump file to run for president before June 1, 2021?",
|
"title": "Will 225M COVID-19 vaccine doses have been administered in the US by Biden's 100th day in office? ",
|
||||||
"url": "https://polymarket.com/market/will-donald-trump-file-to-run-for-president-before-june-1-2021-1",
|
"url": "https://polymarket.com/market/will-225-m-covid-19-vaccine-doses-have-been-administered-in-the-us-by-biden-s-100th-day-in-office",
|
||||||
"platform": "PolyMarket",
|
"platform": "PolyMarket",
|
||||||
"description": "This is a market on whether Donald Trump will file to run for president prior to June 1, 2021. The linked PredictIt question is the basis for the creation of this market and will be referenced as the leading resolution source: https://www.predictit.org/markets/detail/6994/Will-Donald-Trump-file-to-run-for-president-before-the-end-of-2021. If the PredictIt question resolves to \"Yes\" prior to June 1, 2021, this market will resolve to “Yes”, and “No” otherwise.",
|
"description": "This is a market on whether 225 million COVID-19 vaccine doses will be administered in the United States by April 29, 2021, 12:00 PM ET (Biden’s 100th day in office). This market will resolve to \"Yes\" if 225 million or more total COVID-19 vaccine doses are administered by the resolution date. This market will resolve to \"No\" if, for any reason, fewer than 225 million COVID-19 vaccines doses are administered by the resolution date. The resolution source for this market will be the number of total COVID-19 vaccine doses administered, as indicated by the CDC’s Covid Data tracker (https://covid.cdc.gov/covid-data-tracker/#vaccinations). This market will resolve according to the data as available immediately at the time of resolution, April 29, 2021, 12:00 PM ET, and resolution will not be delayed for the purpose of waiting for updated data from a specific date. ",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.05850935819533382463369476425064051",
|
"probability": "0.8625280409263922776450772413925053",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.9414906418046661753663052357493595",
|
"probability": "0.1374719590736077223549227586074947",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "96",
|
"numforecasts": "273",
|
||||||
"stars": 3
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"title": "Will any Knicks game have greater than 20% attendance before the NBA season ends?",
|
|
||||||
"url": "https://polymarket.com/market/will-any-knicks-game-have-greater-than-20-attendance-before-the-nba-season-ends",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on whether there will be a New York Knicks game at Madison Square Garden where more than 20% of the seats are filled by the end of the NBA season, including the playoffs. This market will resolve to “Yes” if there is any New York Knicks home game at Madison Square Garden, where official attendance is 3,963 or higher (3,963 is the lowest number that puts attendance over 20% of the 19,812 seating capacity at MSG for NBA games), before the end of the NBA season. This market will resolve to “No” if there is not a single New York Knicks home game at Madison Square Garden, where official attendance is higher than 3,963. The resolution source for this market will be the official attendance data provided in the NBA gamebooks (https://www.nba.com/stats/gamebooks/). The resolution date for this market will be the day the Knicks are eliminated from this NBA season. Resolution may be delayed in the event of a change or postponement in the NBA’s schedule.\n",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "Yes",
|
|
||||||
"probability": "0.7288981168376345387653725396207922",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "No",
|
|
||||||
"probability": "0.2711018831623654612346274603792078",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "54",
|
|
||||||
"stars": 4
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"title": "Will more than 1.75 million people travel through a TSA checkpoint on any day on or before April 10?",
|
|
||||||
"url": "https://polymarket.com/market/will-more-than-175-million-people-travel-through-a-tsa-checkpoint-on-any-day-on-or-before-april-10",
|
|
||||||
"platform": "PolyMarket",
|
|
||||||
"description": "This is a market on whether more than 1,750,000 million people will travel through a TSA checkpoint on any single day after March 22, 2021 and on or before April 10, 2021. The resolution source for this market will be daily checkpoint throughput as measured by the US Transportation Security Administration (TSA), https://www.tsa.gov/coronavirus/passenger-throughput. This market will resolve to “Yes” if the TSA reports a daily checkpoint throughput of more than 1.75 million for any day after March 22, 2021 and on or before April 10, 2021. This market will resolve to “No” otherwise. This market will resolve as soon as throughput data becomes available for the date of April 10, 2021 or on any date before that if the target is reached. Any revisions published prior to the release of data for April 10, 2021 will be considered. Market resolution will occur immediately upon satisfaction of market conditions, regardless of any later revisions.",
|
|
||||||
"options": [
|
|
||||||
{
|
|
||||||
"name": "Yes",
|
|
||||||
"probability": "0.7158133605584465880501470012740285",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "No",
|
|
||||||
"probability": "0.2841866394415534119498529987259715",
|
|
||||||
"type": "PROBABILITY"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"numforecasts": "56",
|
|
||||||
"stars": 4
|
"stars": 4
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -447,16 +373,76 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": "0.2791105028801385312747041678913065",
|
"probability": "0.3074187289292383718296906672878704",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": "0.7208894971198614687252958321086935",
|
"probability": "0.6925812710707616281703093327121296",
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"numforecasts": "30",
|
"numforecasts": "39",
|
||||||
"stars": 4
|
"stars": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will Donald Trump file to run for president before June 1, 2021?",
|
||||||
|
"url": "https://polymarket.com/market/will-donald-trump-file-to-run-for-president-before-june-1-2021-1",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on whether Donald Trump will file to run for president prior to June 1, 2021. The linked PredictIt question is the basis for the creation of this market and will be referenced as the leading resolution source: https://www.predictit.org/markets/detail/6994/Will-Donald-Trump-file-to-run-for-president-before-the-end-of-2021. If the PredictIt question resolves to \"Yes\" prior to June 1, 2021, this market will resolve to “Yes”, and “No” otherwise.",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": "0.05473473251674721078257169228566964",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": "0.9452652674832527892174283077143304",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"numforecasts": "98",
|
||||||
|
"stars": 3
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will any Knicks game have greater than 20% attendance before the NBA season ends?",
|
||||||
|
"url": "https://polymarket.com/market/will-any-knicks-game-have-greater-than-20-attendance-before-the-nba-season-ends",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on whether there will be a New York Knicks game at Madison Square Garden where more than 20% of the seats are filled by the end of the NBA season, including the playoffs. This market will resolve to “Yes” if there is any New York Knicks home game at Madison Square Garden, where official attendance is 3,963 or higher (3,963 is the lowest number that puts attendance over 20% of the 19,812 seating capacity at MSG for NBA games), before the end of the NBA season. This market will resolve to “No” if there is not a single New York Knicks home game at Madison Square Garden, where official attendance is higher than 3,963. The resolution source for this market will be the official attendance data provided in the NBA gamebooks (https://www.nba.com/stats/gamebooks/). The resolution date for this market will be the day the Knicks are eliminated from this NBA season. Resolution may be delayed in the event of a change or postponement in the NBA’s schedule.\n",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": "0.722552112790316904876933165751827",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": "0.277447887209683095123066834248173",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"numforecasts": "55",
|
||||||
|
"stars": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Will there be enough signatures for a vote on the recall of Gov. Newsom by March 17?",
|
||||||
|
"url": "https://polymarket.com/market/will-there-be-enough-signatures-for-a-vote-on-recall-of-gov-newsom-by-march-17",
|
||||||
|
"platform": "PolyMarket",
|
||||||
|
"description": "This is a market on if there will be enough petition signatures for a vote on the recall of California Governor Gavin Newson prior to March 17, 2021. This market will resolve to \"Yes\" if a recall election is triggered and \"No\" otherwise. The linked PredictIt question will be referenced as the leading resolution source, https://www.predictit.org/markets/detail/7039/Will-there-be-enough-signatures-by-Mar-17-for-a-vote-on-recall-of-Gov-Newsom. This market will resolve when the PredictIt market is resolved, to the same outcome.",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": "0.9887645696991241916193178356973243",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": "0.01123543030087580838068216430267569",
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"numforecasts": "1368",
|
||||||
|
"stars": 3
|
||||||
}
|
}
|
||||||
]
|
]
|
File diff suppressed because it is too large
Load Diff
|
@ -149,27 +149,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Friedrich Merz",
|
"name": "Friedrich Merz",
|
||||||
"probability": 0.0054093331180364934,
|
"probability": 0.0052495494789626266,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Annegret Kramp-Karrenbauer",
|
"name": "Annegret Kramp-Karrenbauer",
|
||||||
"probability": 0.01751978039722267,
|
"probability": 0.017002272193058058,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Jens Spahn",
|
"name": "Jens Spahn",
|
||||||
"probability": 0.052074923300500564,
|
"probability": 0.05053670767061036,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Armin Laschet",
|
"name": "Armin Laschet",
|
||||||
"probability": 0.3703374777975133,
|
"probability": 0.3593982605970383,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Robert Habeck",
|
"name": "Robert Habeck",
|
||||||
"probability": 0.07024059421927982,
|
"probability": 0.0681657917417535,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -189,7 +189,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ralph Brinkhaus",
|
"name": "Ralph Brinkhaus",
|
||||||
"probability": 0.03229452607782981,
|
"probability": 0.031340593904254484,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -224,7 +224,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ursula Von der Leyen",
|
"name": "Ursula Von der Leyen",
|
||||||
"probability": 0.02518973034070725,
|
"probability": 0.024445663245318498,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -239,22 +239,22 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Markus Söder",
|
"name": "Markus Söder",
|
||||||
"probability": 0.3229452607782981,
|
"probability": 0.3237483350309488,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Olaf Scholz",
|
"name": "Olaf Scholz",
|
||||||
"probability": 0.0538511222347812,
|
"probability": 0.05226044033534435,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Norbert Röttgen",
|
"name": "Norbert Röttgen",
|
||||||
"probability": 0.0026642984014209592,
|
"probability": 0.002585598997100995,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Annalena Baerbock",
|
"name": "Annalena Baerbock",
|
||||||
"probability": 0.04747295333440982,
|
"probability": 0.06526678680560996,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -652,12 +652,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Boris Johnson",
|
"name": "Boris Johnson",
|
||||||
"probability": 0.04372298723489799,
|
"probability": 0.04157904798317722,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Rishi Sunak",
|
"name": "Rishi Sunak",
|
||||||
"probability": 0.05025630716654941,
|
"probability": 0.04779200917606577,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -667,37 +667,37 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Priti Patel",
|
"name": "Priti Patel",
|
||||||
"probability": 0.10051261433309883,
|
"probability": 0.09558401835213154,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Michael Gove",
|
"name": "Michael Gove",
|
||||||
"probability": 0.09568800884511007,
|
"probability": 0.09099598547122922,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Robert Buckland",
|
"name": "Robert Buckland",
|
||||||
"probability": 0.08041009146647905,
|
"probability": 0.07646721468170524,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ben Wallace",
|
"name": "Ben Wallace",
|
||||||
"probability": 0.1196100110563876,
|
"probability": 0.11374498183903654,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Matt Hancock",
|
"name": "Matt Hancock",
|
||||||
"probability": 0.10925721178007841,
|
"probability": 0.10389982794876698,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Alok Sharma",
|
"name": "Alok Sharma",
|
||||||
"probability": 0.077294200422153,
|
"probability": 0.07350411011278916,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Elizabeth Truss",
|
"name": "Elizabeth Truss",
|
||||||
"probability": 0.05437732435420647,
|
"probability": 0.05171095392850317,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -707,7 +707,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Gavin Williamson",
|
"name": "Gavin Williamson",
|
||||||
"probability": 0.14785405568398838,
|
"probability": 0.1406040909959855,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -717,7 +717,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Robert Jenrick",
|
"name": "Robert Jenrick",
|
||||||
"probability": 0.077294200422153,
|
"probability": 0.07350411011278916,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -727,7 +727,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Brandon Lewis",
|
"name": "Brandon Lewis",
|
||||||
"probability": 0,
|
"probability": 0.04903460141464348,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -752,7 +752,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Amanda Milling",
|
"name": "Amanda Milling",
|
||||||
"probability": 0.04372298723489799,
|
"probability": 0.04157904798317722,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1248,61 +1248,61 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Sadiq Khan",
|
"name": "Sadiq Khan",
|
||||||
"probability": 0.9542787780699976,
|
"probability": 0.9522559806197634,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Shaun Bailey",
|
"name": "Shaun Bailey",
|
||||||
"probability": 0.021950232652235474,
|
"probability": 0.014434238417280703,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Siân Berry",
|
"name": "Siân Berry",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Brian Rose",
|
"name": "Brian Rose",
|
||||||
"probability": 0.021950232652235474,
|
"probability": 0.03149288381952153,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Mandu Reid",
|
"name": "Mandu Reid",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Luisa Porritt",
|
"name": "Luisa Porritt",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Laurence Fox",
|
"name": "Laurence Fox",
|
||||||
"probability": 0.001011531458628363,
|
"probability": 0.0010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "David Kurten",
|
"name": "David Kurten",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Piers Corbyn",
|
"name": "Piers Corbyn",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Farah London",
|
"name": "Farah London",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Peter Gammons",
|
"name": "Peter Gammons",
|
||||||
"probability": 0.0001011531458628363,
|
"probability": 0.00010093873019077415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1316,12 +1316,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.44574557708508844,
|
"probability": 0.4108006448146158,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.5542544229149116,
|
"probability": 0.5891993551853842,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1412,22 +1412,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Conservative",
|
"name": "Conservative",
|
||||||
"probability": 0.5074626865671642,
|
"probability": 0.5163281049112882,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Labour",
|
"name": "Labour",
|
||||||
"probability": 0.36370777690494893,
|
"probability": 0.3571612239650296,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Liberal Democrats",
|
"name": "Liberal Democrats",
|
||||||
"probability": 0.08728288382648162,
|
"probability": 0.08571183680466272,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Green",
|
"name": "Green",
|
||||||
"probability": 0.04154665270140525,
|
"probability": 0.040798834319019456,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1860,12 +1860,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.5094983400959056,
|
"probability": 0.4813294624086495,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.49050165990409444,
|
"probability": 0.5186705375913505,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1965,32 +1965,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Joe Biden",
|
"name": "Joe Biden",
|
||||||
"probability": 0.36488833746898264,
|
"probability": 0.36833662388943733,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Kamala Harris",
|
"name": "Kamala Harris",
|
||||||
"probability": 0.36488833746898264,
|
"probability": 0.3629072063178677,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Elizabeth Warren",
|
"name": "Elizabeth Warren",
|
||||||
"probability": 0.05173697270471464,
|
"probability": 0.05145607107601184,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Alexandria Ocasio-Cortez",
|
"name": "Alexandria Ocasio-Cortez",
|
||||||
"probability": 0.08858560794044665,
|
"probability": 0.0881046396841066,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Michelle Obama",
|
"name": "Michelle Obama",
|
||||||
"probability": 0.04590570719602978,
|
"probability": 0.04565646594274432,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Pete Buttigieg",
|
"name": "Pete Buttigieg",
|
||||||
"probability": 0.062034739454094295,
|
"probability": 0.06169792694965449,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2010,7 +2010,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Bernie Sanders",
|
"name": "Bernie Sanders",
|
||||||
"probability": 0.020719602977667496,
|
"probability": 0.020607107601184598,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2050,7 +2050,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Michael Bloomberg",
|
"name": "Michael Bloomberg",
|
||||||
"probability": 0.001240694789081886,
|
"probability": 0.0012339585389930898,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2163,47 +2163,47 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Joe Biden",
|
"name": "Joe Biden",
|
||||||
"probability": 0.1802162162162162,
|
"probability": 0.1821658835099989,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Kamala Harris",
|
"name": "Kamala Harris",
|
||||||
"probability": 0.21199999999999997,
|
"probability": 0.2142935198338979,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Donald Trump",
|
"name": "Donald Trump",
|
||||||
"probability": 0.1257297297297297,
|
"probability": 0.11627144574363457,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Tucker Carlson",
|
"name": "Tucker Carlson",
|
||||||
"probability": 0.024540540540540536,
|
"probability": 0.024806032127636324,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Tom Cotton",
|
"name": "Tom Cotton",
|
||||||
"probability": 0.01081081081081081,
|
"probability": 0.010927767457108512,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Mike Pence",
|
"name": "Mike Pence",
|
||||||
"probability": 0.03729729729729729,
|
"probability": 0.037700797727024365,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Donald Trump Jr.",
|
"name": "Donald Trump Jr.",
|
||||||
"probability": 0.06356756756756755,
|
"probability": 0.06425527264779805,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ted Cruz",
|
"name": "Ted Cruz",
|
||||||
"probability": 0.019675675675675672,
|
"probability": 0.01988853677193749,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Alexandria Ocasio-Cortez",
|
"name": "Alexandria Ocasio-Cortez",
|
||||||
"probability": 0.0721081081081081,
|
"probability": 0.07288820893891378,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2213,7 +2213,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Nikki Haley",
|
"name": "Nikki Haley",
|
||||||
"probability": 0.06972972972972973,
|
"probability": 0.0704841000983499,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2243,7 +2243,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Pete Buttigieg",
|
"name": "Pete Buttigieg",
|
||||||
"probability": 0.05405405405405404,
|
"probability": 0.05463883728554256,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2263,7 +2263,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Mike Pompeo",
|
"name": "Mike Pompeo",
|
||||||
"probability": 0.02702702702702702,
|
"probability": 0.02731941864277128,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2283,7 +2283,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ivanka Trump",
|
"name": "Ivanka Trump",
|
||||||
"probability": 0.05405405405405404,
|
"probability": 0.05463883728554256,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2298,7 +2298,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ron DeSantis",
|
"name": "Ron DeSantis",
|
||||||
"probability": 0.04918918918918918,
|
"probability": 0.049721341929843725,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2312,17 +2312,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Shaun Bailey",
|
"name": "Shaun Bailey",
|
||||||
"probability": 0.8999332252217878,
|
"probability": 0.9088631984585742,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Sadiq Khan",
|
"name": "Sadiq Khan",
|
||||||
"probability": 0.028045406849184395,
|
"probability": 0.028323699421965318,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Siân Berry",
|
"name": "Siân Berry",
|
||||||
"probability": 0.006391300200324335,
|
"probability": 0.012813102119460502,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2332,17 +2332,17 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Brian Rose",
|
"name": "Brian Rose",
|
||||||
"probability": 0.06152818849565964,
|
"probability": 0.045857418111753374,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Mandu Reid",
|
"name": "Mandu Reid",
|
||||||
"probability": 0.0009539254030334829,
|
"probability": 0.0009633911368015415,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Laurence Fox",
|
"name": "Laurence Fox",
|
||||||
"probability": 0.0031479538300104933,
|
"probability": 0.003179190751445087,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2413,17 +2413,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Fewer than 3",
|
"name": "Fewer than 3",
|
||||||
"probability": 0.1290172766115549,
|
"probability": 0.123071168053867,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Exactly 3",
|
"name": "Exactly 3",
|
||||||
"probability": 0.31813115363180383,
|
"probability": 0.3203030019639016,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Exactly 4",
|
"name": "Exactly 4",
|
||||||
"probability": 0.5528515697566413,
|
"probability": 0.5566258299822313,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2630,12 +2630,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.7920825016633399,
|
"probability": 0.763369616658779,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.20791749833666,
|
"probability": 0.236630383341221,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2649,12 +2649,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.3994252873563218,
|
"probability": 0.40614775271224385,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.6005747126436781,
|
"probability": 0.5938522472877561,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2783,12 +2783,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.7037808871688002,
|
"probability": 0.7189000847537433,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.2962191128311997,
|
"probability": 0.2810999152462567,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2802,12 +2802,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "In-person and postal voting",
|
"name": "In-person and postal voting",
|
||||||
"probability": 0.947219512195122,
|
"probability": 0.948190001915342,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Postal voting only",
|
"name": "Postal voting only",
|
||||||
"probability": 0.05278048780487805,
|
"probability": 0.05180999808465811,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -2859,27 +2859,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Andrew Yang",
|
"name": "Andrew Yang",
|
||||||
"probability": 0.5962437395659432,
|
"probability": 0.5754450978812535,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Eric Adams",
|
"name": "Eric Adams",
|
||||||
"probability": 0.14148580968280466,
|
"probability": 0.1714331748972851,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Scott Stringer",
|
"name": "Scott Stringer",
|
||||||
"probability": 0.07587646076794657,
|
"probability": 0.07322967856279707,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Raymond McGuire",
|
"name": "Raymond McGuire",
|
||||||
"probability": 0.03797996661101836,
|
"probability": 0.036655119632643195,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Maya Wiley",
|
"name": "Maya Wiley",
|
||||||
"probability": 0.09933222036727879,
|
"probability": 0.09586723596229758,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2889,7 +2889,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Dianne Morales",
|
"name": "Dianne Morales",
|
||||||
"probability": 0.04908180300500834,
|
"probability": 0.04736969306372351,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -3283,12 +3283,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.11546469808820746,
|
"probability": 0.13262180974477958,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.8845353019117925,
|
"probability": 0.8673781902552203,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -3302,12 +3302,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Less than 2.0%",
|
"name": "Less than 2.0%",
|
||||||
"probability": 0.5194617972128784,
|
"probability": 0.47011367803447013,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "2.0% or more",
|
"name": "2.0% or more",
|
||||||
"probability": 0.4805382027871216,
|
"probability": 0.5298863219655299,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -4212,27 +4212,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Labour",
|
"name": "Labour",
|
||||||
"probability": 0.5319148936170212,
|
"probability": 0.514421177400237,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Conservative",
|
"name": "Conservative",
|
||||||
"probability": 0.4375661885048618,
|
"probability": 0.4489332279731331,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Reform UK",
|
"name": "Reform UK",
|
||||||
"probability": 0.013767209011264077,
|
"probability": 0.014124851837218488,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Liberal Democrats",
|
"name": "Liberal Democrats",
|
||||||
"probability": 0.0019254837777991718,
|
"probability": 0.0019755037534571313,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Northern Independence Party",
|
"name": "Northern Independence Party (Thelma Walker)",
|
||||||
"probability": 0.014826225089053622,
|
"probability": 0.020545239035954167,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -4280,27 +4280,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "60 or fewer",
|
"name": "60 or fewer",
|
||||||
"probability": 0.27236315086782376,
|
"probability": 0.28265149857799166,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "61–64",
|
"name": "61–64",
|
||||||
"probability": 0.19253741831213547,
|
"probability": 0.16203602421060306,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "65–68",
|
"name": "65–68",
|
||||||
"probability": 0.24228796289789892,
|
"probability": 0.25144023918909064,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "69–72",
|
"name": "69–72",
|
||||||
"probability": 0.19520764528142787,
|
"probability": 0.2025814920148764,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "73 or more",
|
"name": "73 or more",
|
||||||
"probability": 0.09760382264071393,
|
"probability": 0.1012907460074382,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -4414,17 +4414,17 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Siân Berry",
|
"name": "Siân Berry",
|
||||||
"probability": 0.5638074435016383,
|
"probability": 0.5179040119985002,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Luisa Porritt",
|
"name": "Luisa Porritt",
|
||||||
"probability": 0.30437704780307484,
|
"probability": 0.32320959880015,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Shaun Bailey",
|
"name": "Shaun Bailey",
|
||||||
"probability": 0.02335545660757792,
|
"probability": 0.026059242594675666,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -4444,12 +4444,12 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Brian Rose",
|
"name": "Brian Rose",
|
||||||
"probability": 0.0893892296059817,
|
"probability": 0.1115485564304462,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Laurence Fox",
|
"name": "Laurence Fox",
|
||||||
"probability": 0.019070822481727295,
|
"probability": 0.021278590176227973,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -4618,12 +4618,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.6044042127252154,
|
"probability": 0.6267722694827418,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.3955957872747846,
|
"probability": 0.37322773051725827,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
|
@ -6,12 +6,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.5238095238095238,
|
"probability": 0.5454545454545454,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.47619047619047616,
|
"probability": 0.4545454545454546,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -24,30 +24,30 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.5238095238095238,
|
"probability": 0.5,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.47619047619047616,
|
"probability": 0.5,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "Northern Independence Party",
|
"title": "Northern Independence Party / Thelma Walker",
|
||||||
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
"platform": "WilliamHill",
|
"platform": "WilliamHill",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Yes",
|
"name": "Yes",
|
||||||
"probability": 0.038461538461538464,
|
"probability": 0.029411764705882353,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "No",
|
"name": "No",
|
||||||
"probability": 0.9615384615384616,
|
"probability": 0.9705882352941176,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -71,6 +71,24 @@
|
||||||
],
|
],
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"title": "SDP",
|
||||||
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
|
"platform": "WilliamHill",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": 0.00398406374501992,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": 0.9960159362549801,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"title": "Liberal Democrats",
|
"title": "Liberal Democrats",
|
||||||
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
|
@ -108,7 +126,61 @@
|
||||||
"stars": 2
|
"stars": 2
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"title": "SDP",
|
"title": "Women's Equality Party",
|
||||||
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
|
"platform": "WilliamHill",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": 0.001996007984031936,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": 0.998003992015968,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "UKIP",
|
||||||
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
|
"platform": "WilliamHill",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": 0.001996007984031936,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": 0.998003992015968,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "North East Party",
|
||||||
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
|
"platform": "WilliamHill",
|
||||||
|
"options": [
|
||||||
|
{
|
||||||
|
"name": "Yes",
|
||||||
|
"probability": 0.001996007984031936,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "No",
|
||||||
|
"probability": 0.998003992015968,
|
||||||
|
"type": "PROBABILITY"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"stars": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "Samantha Lee (Ind)",
|
||||||
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
"url": "https://sports.williamhill.com/betting/en-gb/politics",
|
||||||
"platform": "WilliamHill",
|
"platform": "WilliamHill",
|
||||||
"options": [
|
"options": [
|
||||||
|
@ -935,32 +1007,32 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "SNP",
|
"name": "SNP",
|
||||||
"probability": 0.936717595487423,
|
"probability": 0.9396320653181106,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Conservative",
|
"name": "Conservative",
|
||||||
"probability": 0.02782602268947933,
|
"probability": 0.02791259958739093,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Labour",
|
"name": "Labour",
|
||||||
"probability": 0.018550681792986218,
|
"probability": 0.018608399724927286,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Liberal Democrat",
|
"name": "Liberal Democrat",
|
||||||
"probability": 0.00936717595487423,
|
"probability": 0.006284956198485375,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Greens",
|
"name": "Greens",
|
||||||
"probability": 0.003769262037618714,
|
"probability": 0.0037809895855429945,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Reform UK",
|
"name": "Reform UK",
|
||||||
"probability": 0.003769262037618714,
|
"probability": 0.0037809895855429945,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1192,22 +1264,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Andy Street (Conservative)",
|
"name": "Andy Street (Conservative)",
|
||||||
"probability": 0.6801053583651119,
|
"probability": 0.6807310358790816,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Liam Byrne (Labour)",
|
"name": "Liam Byrne (Labour)",
|
||||||
"probability": 0.30913879925686905,
|
"probability": 0.30942319812685526,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Jenny Wilkinson (Lib Dem)",
|
"name": "Jenny Wilkinson (Lib Dem)",
|
||||||
"probability": 0.006141830448811968,
|
"probability": 0.0061474807574871905,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Ashvir Sangha (Independent)",
|
"name": "Ashvir Sangha (Independent)",
|
||||||
"probability": 0.004614011929207001,
|
"probability": 0.0036982852365759593,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1253,27 +1325,27 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Tracy Brabin (Labour)",
|
"name": "Tracy Brabin (Labour)",
|
||||||
"probability": 0.8450310681917125,
|
"probability": 0.8488589000966289,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Matthew Robinson (Conservatives)",
|
"name": "Matthew Robinson (Conservatives)",
|
||||||
"probability": 0.13077861769633645,
|
"probability": 0.1313710202530497,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Andrew Cooper (Green)",
|
"name": "Andrew Cooper (Green)",
|
||||||
"probability": 0.009063864592815399,
|
"probability": 0.00910492219575592,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Stewart Golton (Lib Dem)",
|
"name": "Stewart Golton (Lib Dem)",
|
||||||
"probability": 0.009063864592815399,
|
"probability": 0.006090047296498993,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Bob Buxton (Yorkshire Party)",
|
"name": "Bob Buxton (Yorkshire Party)",
|
||||||
"probability": 0.006062584926320233,
|
"probability": 0.0045751101580664075,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1364,22 +1436,22 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Labour",
|
"name": "Labour",
|
||||||
"probability": 0.8444759244837123,
|
"probability": 0.7894110347590826,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Conservative",
|
"name": "Conservative",
|
||||||
"probability": 0.10644654510298895,
|
"probability": 0.16403346176812106,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Plaid Cymru",
|
"name": "Plaid Cymru",
|
||||||
"probability": 0.043085506351209814,
|
"probability": 0.04296114474879361,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Liberal Democrat",
|
"name": "Liberal Democrat",
|
||||||
"probability": 0.005992024062088782,
|
"probability": 0.0035943587240026527,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1391,38 +1463,38 @@
|
||||||
"platform": "WilliamHill",
|
"platform": "WilliamHill",
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "Markus Soder",
|
"name": "Armin Laschet",
|
||||||
"probability": 0.38324741732256423,
|
"probability": 0.35288419571610885,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Armin Laschet",
|
"name": "Markus Soder",
|
||||||
"probability": 0.3406643709533904,
|
"probability": 0.35288419571610885,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Annalena Baerbock or Robert Habeck",
|
"name": "Annalena Baerbock or Robert Habeck",
|
||||||
"probability": 0.10949926209216121,
|
"probability": 0.1235094685006381,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Robert Habeck",
|
"name": "Robert Habeck",
|
||||||
"probability": 0.05896114112654835,
|
"probability": 0.06736880100034806,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Annalena Baerbock",
|
"name": "Annalena Baerbock",
|
||||||
"probability": 0.051099655643008564,
|
"probability": 0.05700437007721759,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Olaf Scholz",
|
"name": "Olaf Scholz",
|
||||||
"probability": 0.04508793144971344,
|
"probability": 0.035288419571610885,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Alice Weidel",
|
"name": "Alice Weidel",
|
||||||
"probability": 0.011440221412613857,
|
"probability": 0.011060549417967592,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -1488,12 +1560,12 @@
|
||||||
"options": [
|
"options": [
|
||||||
{
|
{
|
||||||
"name": "2021",
|
"name": "2021",
|
||||||
"probability": 0.3373493975903614,
|
"probability": 0.2765957446808511,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "2022",
|
"name": "2022",
|
||||||
"probability": 0.6626506024096386,
|
"probability": 0.723404255319149,
|
||||||
"type": "PROBABILITY"
|
"type": "PROBABILITY"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
Loading…
Reference in New Issue
Block a user