Daily commit
This commit is contained in:
parent
805a696d1c
commit
62f99a19ae
|
@ -1,4 +1,46 @@
|
|||
[
|
||||
{
|
||||
"title": "Will the Chinese People's Liberation Army (PLA) seize control of any Taiwanese-occupied features in the South China Sea before July 1, 2021?",
|
||||
"url": "https://www.cset-foretell.com/questions/125-will-the-chinese-people-s-liberation-army-pla-seize-control-of-any-taiwanese-occupied-features-in-the-south-china-sea-before-july-1-2021",
|
||||
"platform": "CSET-foretell",
|
||||
"description": "Context. Tensions between Taiwan and China have been particularly high in 2020 (CFR, BBC). China had previously aimed for peaceful reunification with Taiwan. In May 2020, Chinese Premier Li Keqiang dropped the term “peaceful” from a speech, apparently reflecting shifting policies on the island (Reuters). Throughout 2020, China has stepped up activities in the East and South China Sea (Al Jazeera, IISS) with some media reporting of an imminent invasion of Taiwan (Express, Forbes). In the Annual Report to Congress, the the Office of the Secretary of Defence state that an invasion of Taiwan would be a “significant political and military risk” but “China could launch an invasion of small Taiwan-occupied islands in the South China Sea such as Pratas or Itu Aba” (Department of Defense). In August 2020, the People’s Liberation Army (PLA) conducted military exercises off the Pratas islands to “simulate seizing the Pratas Islands” (Taipei Times). Foreign Policy assessed an invasion of Taiwan by China was unlikely, while The Diplomat suggests China’s military activity represents the end state of a failed strategy, not an imminent attack. Taiwan’s current features include the Pratas Islands and Itu Aba Island (CSIS). The control of a feature in the South China Sea would indicate a serious escalation within the region which will be of interest to the international community. The July 1 2021 represents the 100th anniversary of the Chinese Communist Party (CCP). Resolution details. The outcome of this question will be determined by reputable media reporting or official statements. Seizing would involve an invasion, conquest, and control of a feature by Chinese military forces, lasting more than 24 hours. The question will resolve once control has been held for 24 hours, irrespective of how long that control is maintained after that period. ***\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.12,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.88,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "10",
|
||||
"numforecasters": "9",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "Will China sign an official agreement on establishing a future military base in the Pacific Ocean before December 31, 2021?",
|
||||
"url": "https://www.cset-foretell.com/questions/126-will-china-sign-an-official-agreement-on-establishing-a-future-military-base-in-the-pacific-ocean-before-december-31-2021",
|
||||
"platform": "CSET-foretell",
|
||||
"description": "Context. Chinese military basing in the Pacific has been an acute concern for US, Australian and New Zealand military planners for some time. China has made political and economic inroads into the Pacific islands for years and recent ‘covid diplomacy’ has generated new political capital (Eurasian Times). China came close in 2018 as it discussed co-developing four major ports and eventually a military base in Papua New Guinea, including at Lombrum Naval Base on Manus Island. There was also speculation of a proposed military base on Vanuatu (Reuters), which China denied (Guardian).The signing of an official agreement between one of more Pacific nations would be seen as a significant development in this area, which would be of interest to many teams.Resolution details. The outcome of this question will be determined on any official announcement or reputable media reporting that an agreement has been reached to establish a Chinese military base in the Pacific Ocean.\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.23,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.77,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "7",
|
||||
"numforecasters": "7",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "What percentage of software engineer job postings between July 1 and September 30, 2021, inclusive, will allow for remote work?",
|
||||
"url": "https://www.cset-foretell.com/questions/123-what-percentage-of-software-engineer-job-postings-between-july-1-and-september-30-2021-inclusive-will-allow-for-remote-work",
|
||||
|
@ -7,32 +49,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 5.5%",
|
||||
"probability": 0.1292,
|
||||
"probability": 0.12390000000000001,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 5.5% but less than or equal to 7%",
|
||||
"probability": 0.2303,
|
||||
"probability": 0.2161,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 7% and 9.5%, inclusive",
|
||||
"probability": 0.317,
|
||||
"probability": 0.282,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 9.5% and 12%, inclusive",
|
||||
"probability": 0.16620000000000001,
|
||||
"probability": 0.1866,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 12%",
|
||||
"probability": 0.1573,
|
||||
"probability": 0.19140000000000001,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "65",
|
||||
"numforecasters": "53",
|
||||
"numforecasts": "77",
|
||||
"numforecasters": "63",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -43,17 +85,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.68,
|
||||
"probability": 0.73,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.32,
|
||||
"probability": 0.27,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "13",
|
||||
"numforecasters": "12",
|
||||
"numforecasts": "14",
|
||||
"numforecasters": "13",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -64,17 +106,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.62,
|
||||
"probability": 0.64,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.38,
|
||||
"probability": 0.36,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "11",
|
||||
"numforecasters": "10",
|
||||
"numforecasts": "12",
|
||||
"numforecasters": "11",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -85,17 +127,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.83,
|
||||
"probability": 0.84,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.17,
|
||||
"probability": 0.16,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "12",
|
||||
"numforecasters": "11",
|
||||
"numforecasts": "13",
|
||||
"numforecasters": "12",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -106,32 +148,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 7,500",
|
||||
"probability": 0.039599999999999996,
|
||||
"probability": 0.042,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 7,500 and 9,500, inclusive",
|
||||
"probability": 0.13,
|
||||
"probability": 0.1348,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 9,500 but less than or equal to 11,500",
|
||||
"probability": 0.2783,
|
||||
"probability": 0.3064,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 11,500 but less than or equal to 13,500",
|
||||
"probability": 0.31,
|
||||
"probability": 0.29600000000000004,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 13,500",
|
||||
"probability": 0.2421,
|
||||
"probability": 0.2208,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "42",
|
||||
"numforecasters": "34",
|
||||
"numforecasts": "44",
|
||||
"numforecasters": "36",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -142,32 +184,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 70,000",
|
||||
"probability": 0.1119,
|
||||
"probability": 0.1234,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 70,000 and 90,000, inclusive",
|
||||
"probability": 0.316,
|
||||
"probability": 0.33340000000000003,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 90,000 but less than or equal to 110,000",
|
||||
"probability": 0.3179,
|
||||
"probability": 0.3059,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 110,000 but less than or equal to 130,000",
|
||||
"probability": 0.175,
|
||||
"probability": 0.165,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 130,000",
|
||||
"probability": 0.0793,
|
||||
"probability": 0.0723,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "70",
|
||||
"numforecasters": "60",
|
||||
"numforecasts": "74",
|
||||
"numforecasters": "63",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -178,32 +220,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than $400 billion",
|
||||
"probability": 0.1371,
|
||||
"probability": 0.1294,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between $400 billion and $525 billion, inclusive",
|
||||
"probability": 0.17859999999999998,
|
||||
"probability": 0.1863,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $525 billion but less than or equal to $650 billion",
|
||||
"probability": 0.4921,
|
||||
"probability": 0.5024000000000001,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $650 billion but less than or equal to $775 billion",
|
||||
"probability": 0.18,
|
||||
"probability": 0.1675,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $775 billion",
|
||||
"probability": 0.0121,
|
||||
"probability": 0.0144,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "22",
|
||||
"numforecasters": "20",
|
||||
"numforecasts": "24",
|
||||
"numforecasters": "22",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -214,32 +256,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 3%",
|
||||
"probability": 0.228,
|
||||
"probability": 0.243,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 3% and 4.5%, inclusive",
|
||||
"probability": 0.32299999999999995,
|
||||
"probability": 0.313,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 4.5% but less than or equal to 6%",
|
||||
"probability": 0.307,
|
||||
"probability": 0.297,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 6% but less than or equal to 7.5%",
|
||||
"probability": 0.096,
|
||||
"probability": 0.1,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 7.5%",
|
||||
"probability": 0.046,
|
||||
"probability": 0.047,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "13",
|
||||
"numforecasters": "12",
|
||||
"numforecasts": "14",
|
||||
"numforecasters": "13",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -250,32 +292,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than $470 billion",
|
||||
"probability": 0.04650000000000001,
|
||||
"probability": 0.047,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between $470 billion and $540 billion, inclusive",
|
||||
"probability": 0.10490000000000001,
|
||||
"probability": 0.102,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $540 billion but less than or equal to $610 billion",
|
||||
"probability": 0.2274,
|
||||
"probability": 0.2225,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $610 billion but less than or equal to $680 billion",
|
||||
"probability": 0.31370000000000003,
|
||||
"probability": 0.3239,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $680 billion",
|
||||
"probability": 0.3074,
|
||||
"probability": 0.3045,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "66",
|
||||
"numforecasters": "62",
|
||||
"numforecasts": "70",
|
||||
"numforecasters": "64",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
@ -286,17 +328,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.22,
|
||||
"probability": 0.21,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.78,
|
||||
"probability": 0.79,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "120",
|
||||
"numforecasters": "105",
|
||||
"numforecasts": "126",
|
||||
"numforecasters": "106",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -316,8 +358,8 @@
|
|||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "163",
|
||||
"numforecasters": "130",
|
||||
"numforecasts": "169",
|
||||
"numforecasters": "131",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -328,17 +370,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than $40 billion",
|
||||
"probability": 0.0557,
|
||||
"probability": 0.056299999999999996,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between $40 billion and $60 billion, inclusive",
|
||||
"probability": 0.2577,
|
||||
"probability": 0.259,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $60 billion but less than or equal to $80 billion",
|
||||
"probability": 0.40869999999999995,
|
||||
"probability": 0.40630000000000005,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -348,11 +390,11 @@
|
|||
},
|
||||
{
|
||||
"name": "More than $100 billion",
|
||||
"probability": 0.073,
|
||||
"probability": 0.0733,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "47",
|
||||
"numforecasts": "49",
|
||||
"numforecasters": "43",
|
||||
"stars": 2
|
||||
},
|
||||
|
@ -369,26 +411,26 @@
|
|||
},
|
||||
{
|
||||
"name": "Between $13 billion and $17 billion, inclusive",
|
||||
"probability": 0.129,
|
||||
"probability": 0.121,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $17 billion but less than or equal to $21 billion",
|
||||
"probability": 0.4286,
|
||||
"probability": 0.4255,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $21 billion but less than or equal to $25 billion",
|
||||
"probability": 0.3272,
|
||||
"probability": 0.3159,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $25 billion",
|
||||
"probability": 0.08070000000000001,
|
||||
"probability": 0.10310000000000001,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "49",
|
||||
"numforecasts": "51",
|
||||
"numforecasters": "41",
|
||||
"stars": 2
|
||||
},
|
||||
|
@ -400,17 +442,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than -0.25",
|
||||
"probability": 0.1868,
|
||||
"probability": 0.19030000000000002,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between -0.25 and 0, inclusive",
|
||||
"probability": 0.3164,
|
||||
"probability": 0.31489999999999996,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 0 but less than or equal to 0.25",
|
||||
"probability": 0.2991,
|
||||
"probability": 0.29719999999999996,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -420,11 +462,11 @@
|
|||
},
|
||||
{
|
||||
"name": "More than 0.5",
|
||||
"probability": 0.0436,
|
||||
"probability": 0.0435,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "128",
|
||||
"numforecasts": "134",
|
||||
"numforecasters": "108",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -436,31 +478,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than $200 million",
|
||||
"probability": 0.0506,
|
||||
"probability": 0.051,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between $200 million and $350 million, inclusive",
|
||||
"probability": 0.2032,
|
||||
"probability": 0.1984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $350 million but less than or equal to $500 million",
|
||||
"probability": 0.3639,
|
||||
"probability": 0.3619,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $500 million but less than or equal to $650 million",
|
||||
"probability": 0.2382,
|
||||
"probability": 0.2429,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $650 million",
|
||||
"probability": 0.14400000000000002,
|
||||
"probability": 0.1458,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "107",
|
||||
"numforecasts": "109",
|
||||
"numforecasters": "90",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -472,31 +514,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than $30 million",
|
||||
"probability": 0.0495,
|
||||
"probability": 0.0482,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between $30 million and $70 million, inclusive",
|
||||
"probability": 0.30329999999999996,
|
||||
"probability": 0.3013,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $70 million but less than or equal to $110 million",
|
||||
"probability": 0.3326,
|
||||
"probability": 0.33409999999999995,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $110 million but less than or equal to $150 million",
|
||||
"probability": 0.1923,
|
||||
"probability": 0.19329999999999997,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than $150 million",
|
||||
"probability": 0.1223,
|
||||
"probability": 0.1231,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "127",
|
||||
"numforecasts": "130",
|
||||
"numforecasters": "114",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -508,31 +550,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 26,000",
|
||||
"probability": 0.039,
|
||||
"probability": 0.04,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 26,000 and 28,000, inclusive",
|
||||
"probability": 0.0834,
|
||||
"probability": 0.0855,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 28,000 but less than or equal to 30,000",
|
||||
"probability": 0.19829999999999998,
|
||||
"probability": 0.2028,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 30,000 but less than or equal to 32,000",
|
||||
"probability": 0.3469,
|
||||
"probability": 0.3348,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 32,000",
|
||||
"probability": 0.33240000000000003,
|
||||
"probability": 0.3369,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "62",
|
||||
"numforecasts": "63",
|
||||
"numforecasters": "42",
|
||||
"stars": 2
|
||||
},
|
||||
|
@ -544,32 +586,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 800",
|
||||
"probability": 0.1329,
|
||||
"probability": 0.12960000000000002,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 800 and 4,000",
|
||||
"probability": 0.4524,
|
||||
"probability": 0.44380000000000003,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 4,000 but less than or equal to 20,000",
|
||||
"probability": 0.2904,
|
||||
"probability": 0.30010000000000003,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 20,000 but less than or equal to 100,000",
|
||||
"probability": 0.09720000000000001,
|
||||
"probability": 0.09960000000000001,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 100,000",
|
||||
"probability": 0.0271,
|
||||
"probability": 0.027000000000000003,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "131",
|
||||
"numforecasters": "99",
|
||||
"numforecasts": "135",
|
||||
"numforecasters": "100",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -580,12 +622,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 0.45%",
|
||||
"probability": 0.0489,
|
||||
"probability": 0.049699999999999994,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 0.45% and 0.7%, inclusive",
|
||||
"probability": 0.1866,
|
||||
"probability": 0.1891,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -595,16 +637,16 @@
|
|||
},
|
||||
{
|
||||
"name": "More than 0.95% but less than or equal to 1.2%",
|
||||
"probability": 0.21969999999999998,
|
||||
"probability": 0.22,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 1.2%",
|
||||
"probability": 0.2503,
|
||||
"probability": 0.2466,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "55",
|
||||
"numforecasts": "58",
|
||||
"numforecasters": "50",
|
||||
"stars": 2
|
||||
},
|
||||
|
@ -616,17 +658,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.44,
|
||||
"probability": 0.43,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.56,
|
||||
"probability": 0.57,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "134",
|
||||
"numforecasters": "86",
|
||||
"numforecasts": "142",
|
||||
"numforecasters": "88",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -637,22 +679,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Zero",
|
||||
"probability": 0.4242,
|
||||
"probability": 0.4311,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "One",
|
||||
"probability": 0.3281,
|
||||
"probability": 0.321,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Two or more",
|
||||
"probability": 0.24760000000000001,
|
||||
"probability": 0.24789999999999998,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "108",
|
||||
"numforecasters": "86",
|
||||
"numforecasts": "116",
|
||||
"numforecasters": "88",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -663,31 +705,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 20%",
|
||||
"probability": 0.0959,
|
||||
"probability": 0.0941,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 20% and 25%, inclusive",
|
||||
"probability": 0.1766,
|
||||
"probability": 0.1827,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 25% but less than or equal to 30%",
|
||||
"probability": 0.361,
|
||||
"probability": 0.3671,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 30% but less than or equal to 35%",
|
||||
"probability": 0.24760000000000001,
|
||||
"probability": 0.2427,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 35%",
|
||||
"probability": 0.11900000000000001,
|
||||
"probability": 0.1134,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "65",
|
||||
"numforecasts": "68",
|
||||
"numforecasters": "59",
|
||||
"stars": 2
|
||||
},
|
||||
|
@ -699,16 +741,16 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.57,
|
||||
"probability": 0.56,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.43,
|
||||
"probability": 0.44,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "295",
|
||||
"numforecasts": "305",
|
||||
"numforecasters": "187",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -720,26 +762,26 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Before February 17, 2021",
|
||||
"probability": 0.0348,
|
||||
"probability": 0.0342,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between February 17 and May 19, 2021, inclusive",
|
||||
"probability": 0.1032,
|
||||
"probability": 0.09359999999999999,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "After May 19, but before or equal to November 17, 2021",
|
||||
"probability": 0.23579999999999998,
|
||||
"probability": 0.2275,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "After November 17, 2021",
|
||||
"probability": 0.6262,
|
||||
"probability": 0.6446999999999999,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "220",
|
||||
"numforecasts": "228",
|
||||
"numforecasters": "132",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -751,31 +793,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 59%",
|
||||
"probability": 0.12789999999999999,
|
||||
"probability": 0.1266,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 59% and 66%, inclusive",
|
||||
"probability": 0.18420000000000003,
|
||||
"probability": 0.18030000000000002,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 66% but less than or equal to 73%",
|
||||
"probability": 0.2625,
|
||||
"probability": 0.26539999999999997,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 73% but less than or equal to 80%",
|
||||
"probability": 0.28800000000000003,
|
||||
"probability": 0.2919,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 80%",
|
||||
"probability": 0.1374,
|
||||
"probability": 0.1358,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "210",
|
||||
"numforecasts": "219",
|
||||
"numforecasters": "166",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -787,31 +829,31 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 15%",
|
||||
"probability": 0.07919999999999999,
|
||||
"probability": 0.0799,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 15% and 17%, inclusive",
|
||||
"probability": 0.1931,
|
||||
"probability": 0.1935,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 17% but less than or equal to 19%",
|
||||
"probability": 0.3221,
|
||||
"probability": 0.3193,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 19% but less than or equal to 21%",
|
||||
"probability": 0.2644,
|
||||
"probability": 0.2656,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 21%",
|
||||
"probability": 0.1413,
|
||||
"probability": 0.1418,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "139",
|
||||
"numforecasts": "145",
|
||||
"numforecasters": "105",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -823,16 +865,16 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.72,
|
||||
"probability": 0.74,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.28,
|
||||
"probability": 0.26,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "171",
|
||||
"numforecasts": "180",
|
||||
"numforecasters": "129",
|
||||
"stars": 3
|
||||
},
|
||||
|
@ -844,32 +886,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 1.5%",
|
||||
"probability": 0.066,
|
||||
"probability": 0.0658,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 1.5% and 3%, inclusive",
|
||||
"probability": 0.13390000000000002,
|
||||
"probability": 0.1349,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 3% but less than or equal to 4.5%",
|
||||
"probability": 0.2087,
|
||||
"probability": 0.2091,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 4.5% but less than or equal to 6%",
|
||||
"probability": 0.2833,
|
||||
"probability": 0.2852,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 6%",
|
||||
"probability": 0.3081,
|
||||
"probability": 0.305,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "199",
|
||||
"numforecasters": "138",
|
||||
"numforecasts": "203",
|
||||
"numforecasters": "139",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -880,32 +922,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 675",
|
||||
"probability": 0.6076,
|
||||
"probability": 0.6114,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 675 and 750, inclusive",
|
||||
"probability": 0.2086,
|
||||
"probability": 0.2072,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 750 but less than or equal to 825",
|
||||
"probability": 0.0998,
|
||||
"probability": 0.09880000000000001,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 825 but less than or equal to 900",
|
||||
"probability": 0.0528,
|
||||
"probability": 0.0519,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 900",
|
||||
"probability": 0.031200000000000002,
|
||||
"probability": 0.030699999999999998,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "146",
|
||||
"numforecasters": "82",
|
||||
"numforecasts": "151",
|
||||
"numforecasters": "84",
|
||||
"stars": 3
|
||||
}
|
||||
]
|
File diff suppressed because it is too large
Load Diff
|
@ -423,76 +423,16 @@
|
|||
"title": "In Cedar Point Nursery v. Hassid, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/cedar-point-nursery-v-hassid/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "50.00% (2 out of 4) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"description": "60.00% (3 out of 5) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.5,
|
||||
"probability": 0.6,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.5,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 4,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In United States v. Cooley, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/united-states-v-cooley/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "0.00% (0 out of 9) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 9-0. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 1,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 9,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Caniglia v. Strom, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/caniglia-v-strom/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "28.57% (2 out of 7) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.2857142857142857,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.7142857142857143,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 7,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Goldman Sachs Group Inc. v. Arkansas Teacher Retirement System, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/goldman-sachs-group-inc-v-arkansas-teacher-retirement-system/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "80.00% (4 out of 5) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.8,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.19999999999999996,
|
||||
"probability": 0.4,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -500,10 +440,10 @@
|
|||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In TransUnion LLC v. Ramirez, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/transunion-llc-v-ramirez/",
|
||||
"title": "In United States v. Cooley, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/united-states-v-cooley/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "0.00% (0 out of 3) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"description": "0.00% (0 out of 10) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 9-0. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
|
@ -516,33 +456,73 @@
|
|||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 3,
|
||||
"numforecasts": 10,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Caniglia v. Strom, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/caniglia-v-strom/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "25.00% (2 out of 8) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.25,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.75,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 8,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Goldman Sachs Group Inc. v. Arkansas Teacher Retirement System, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/goldman-sachs-group-inc-v-arkansas-teacher-retirement-system/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "100.00% (6 out of 6) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 7-2. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 1,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 6,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In TransUnion LLC v. Ramirez, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/transunion-llc-v-ramirez/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "16.67% (1 out of 6) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.16666666666666666,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.8333333333333334,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 6,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In American Athletic Conference v. Alston, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/american-athletic-conference-v-alston/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "0.00% (0 out of 2) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 1,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 2,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In National Collegiate Athletic Association v. Alston, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/national-collegiate-athletic-association-v-alston/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "0.00% (0 out of 3) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 5-4. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
|
@ -559,6 +539,26 @@
|
|||
"numforecasts": 3,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In National Collegiate Athletic Association v. Alston, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/national-collegiate-athletic-association-v-alston/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "25.00% (1 out of 4) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Affirm 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.25,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.75,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 4,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Alaska Native Village Corporation Association v. Confederated Tribes of the Chehalis Reservation, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/alaska-native-village-corporation-association-v-confederated-tribes-of-the-chehalis-reservation/",
|
||||
|
@ -1043,7 +1043,7 @@
|
|||
"title": "In Brnovich v. Democratic National Committee, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/brnovich-v-democratic-national-committee/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "0.00% (0 out of 19) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"description": "0.00% (0 out of 20) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
|
@ -1056,27 +1056,27 @@
|
|||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 19,
|
||||
"numforecasts": 20,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "In Arizona Republican Party v. Democratic National Committee, the SCOTUS will affirm the lower court's decision",
|
||||
"url": "https://fantasyscotus.net/user-predictions/case/arizona-republican-party-v-democratic-national-committee/",
|
||||
"platform": "FantasySCOTUS",
|
||||
"description": "4.17% (1 out of 24) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"description": "4.00% (1 out of 25) of FantasySCOTUS players predict that the lower court's decision will be affirmed. FantasySCOTUS overall predicts an outcome of Reverse 6-3. Historically, FantasySCOTUS has chosen the correct side 64.71% of the time.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.041666666666666664,
|
||||
"probability": 0.04,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.9583333333333334,
|
||||
"probability": 0.96,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": 24,
|
||||
"numforecasts": 25,
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
|
|
|
@ -22,12 +22,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Between 6.0% and 7.0%, inclusive",
|
||||
"probability": 0.56,
|
||||
"probability": 0.55,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 7.0%",
|
||||
"probability": 0.21,
|
||||
"probability": 0.22,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -75,12 +75,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.01,
|
||||
"probability": 0.02,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.99,
|
||||
"probability": 0.98,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -138,17 +138,17 @@
|
|||
},
|
||||
{
|
||||
"name": "More than 500 million but fewer than 960 million",
|
||||
"probability": 0.12,
|
||||
"probability": 0.09,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 960 million and 1.6 billion, inclusive",
|
||||
"probability": 0.77,
|
||||
"probability": 0.75,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 1.6 billion",
|
||||
"probability": 0.1,
|
||||
"probability": 0.15,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -200,12 +200,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Between 1 February 2021 and 31 March 2021",
|
||||
"probability": 0.91,
|
||||
"probability": 0.93,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 1 April 2021 and 31 May 2021",
|
||||
"probability": 0.09,
|
||||
"probability": 0.07,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -234,12 +234,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Between 1 March 2021 and 30 April 2021",
|
||||
"probability": 0.98,
|
||||
"probability": 0.97,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 1 May 2021 and 30 June 2021",
|
||||
"probability": 0.02,
|
||||
"probability": 0.03,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -255,40 +255,6 @@
|
|||
],
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "As of 31 March 2021, what will be the highest seven-day median of COVID-19 confirmed new cases in WHO's Europe Region?</a>",
|
||||
"url": "https://goodjudgment.io/superforecasts/",
|
||||
"platform": "Good Judgment",
|
||||
"description": "Closed 28 March 2021; resolved as \"B: Between 275,000 and 300,000, inclusive\" The status of the COVID-19 outbreak through spring 2021 is an open question, as \"<a href=\"https://apnews.com/article/virus-outbreak-pandemics-italy-madrid-eastern-europe-159a68a460337948d25281c153994c70\" target=\"_blank\">next waves</a>\" are experienced in the fall and winter. The outcome will be determined using the World Health Organization's Coronavirus Disease (COVID-19) <a href=\"https://covid19.who.int/\" target=\"_blank\">Dashboard</a>. The value for a given day will come from the data available on the WHO dashboard at close of business of the day in question. If a data point is not available at that time, the first posting on the WHO dashboard thereafter will be used. Any subsequent revisions to the data are immaterial. To simplify the process, the data will be captured and posted <a href=\"https://docs.google.com/spreadsheets/d/1szi8i948AJRAqlYG82NhcW0qDMuLm6UlAyW_AbFsQ_0/\" target=\"_blank\">here</a> each day.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Less than 275,000",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 275,000 and 300,000, inclusive",
|
||||
"probability": 0.99,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 300,000 but less than 350,000",
|
||||
"probability": 0.01,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 350,000 and 500,000, inclusive",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 500,000",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "When will the U.S. Transportation Security Administration (TSA) next screen 1.4 million or more travelers per day for seven consecutive days?</a>",
|
||||
"url": "https://goodjudgment.io/superforecasts/",
|
||||
|
@ -297,12 +263,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Before 1 July 2021",
|
||||
"probability": 0.93,
|
||||
"probability": 0.97,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 1 July 2021 and 31 August 2021",
|
||||
"probability": 0.05,
|
||||
"probability": 0.01,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -335,12 +301,12 @@
|
|||
},
|
||||
{
|
||||
"name": "More than 10% but less than 20%",
|
||||
"probability": 0.78,
|
||||
"probability": 0.79,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 20% and 30%, inclusive",
|
||||
"probability": 0.2,
|
||||
"probability": 0.19,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -504,12 +470,12 @@
|
|||
},
|
||||
{
|
||||
"name": "More than 10% but less than 20%",
|
||||
"probability": 0.78,
|
||||
"probability": 0.79,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Between 20% and 30%, inclusive",
|
||||
"probability": 0.2,
|
||||
"probability": 0.19,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -6,12 +6,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.09523809523809523,
|
||||
"probability": 0.05,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.9047619047619047,
|
||||
"probability": 0.95,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -44,12 +44,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes, more than 121",
|
||||
"probability": 0.23958333333333337,
|
||||
"probability": 0.24742268041237112,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No, not more than 121",
|
||||
"probability": 0.7604166666666667,
|
||||
"probability": 0.7525773195876287,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -146,22 +146,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Macron and Le Pen",
|
||||
"probability": 0.712871287128713,
|
||||
"probability": 0.7474747474747475,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Macron, but not Le Pen",
|
||||
"probability": 0.07920792079207921,
|
||||
"probability": 0.08080808080808081,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Le Pen, but not Macron",
|
||||
"probability": 0.17821782178217824,
|
||||
"probability": 0.1414141414141414,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Neither of them",
|
||||
"probability": 0.0297029702970297,
|
||||
"probability": 0.030303030303030304,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -194,17 +194,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "In June, 2021 (as planned)",
|
||||
"probability": 0.7142857142857143,
|
||||
"probability": 0.82,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Later in 2021",
|
||||
"probability": 0.2,
|
||||
"probability": 0.17,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Not in 2021",
|
||||
"probability": 0.08571428571428572,
|
||||
"probability": 0.01,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -257,32 +257,32 @@
|
|||
},
|
||||
{
|
||||
"name": "March 2021",
|
||||
"probability": 0.008547008547008546,
|
||||
"probability": 0.010416666666666668,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Maybe later",
|
||||
"probability": 0.13,
|
||||
"probability": 0.14,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "April 2021",
|
||||
"probability": 0.017094017094017092,
|
||||
"probability": 0.04166666666666667,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "May 2021",
|
||||
"probability": 0.2222222222222222,
|
||||
"probability": 0.14583333333333334,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "June 2021",
|
||||
"probability": 0.28205128205128205,
|
||||
"probability": 0.31250000000000006,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Maybe after June 2021",
|
||||
"probability": 0.47008547008547,
|
||||
"probability": 0.48958333333333337,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -296,27 +296,27 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "In May or earlier",
|
||||
"probability": 0.02,
|
||||
"probability": 0.009900990099009901,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in June (government goal)",
|
||||
"probability": 0.41,
|
||||
"probability": 0.49504950495049505,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in July",
|
||||
"probability": 0.32,
|
||||
"probability": 0.297029702970297,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in August",
|
||||
"probability": 0.13,
|
||||
"probability": 0.12871287128712872,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Maybe later",
|
||||
"probability": 0.12,
|
||||
"probability": 0.06930693069306931,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -349,22 +349,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Saad-Eddine El Othmani",
|
||||
"probability": 0.07920792079207921,
|
||||
"probability": 0.08888888888888889,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Abdelilah Benkirane",
|
||||
"probability": 0.06930693069306931,
|
||||
"probability": 0.07777777777777778,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Someone else from PJD",
|
||||
"probability": 0.04950495049504951,
|
||||
"probability": 0.05555555555555555,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Someone else not from PJD",
|
||||
"probability": 0.8019801980198019,
|
||||
"probability": 0.7777777777777779,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -421,12 +421,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.44696969696969696,
|
||||
"probability": 0.4296875,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.5530303030303031,
|
||||
"probability": 0.5703125,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -513,7 +513,7 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Mohamed Abdullahi Mohamed",
|
||||
"probability": 0.9313725490196079,
|
||||
"probability": 0.8137254901960784,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -533,7 +533,7 @@
|
|||
},
|
||||
{
|
||||
"name": "No election in 2021",
|
||||
"probability": 0.0392156862745098,
|
||||
"probability": 0.1568627450980392,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -547,27 +547,27 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Q1, 2021 (or before)",
|
||||
"probability": 0.01941747572815534,
|
||||
"probability": 0.01,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Q2, 2021",
|
||||
"probability": 0.3300970873786408,
|
||||
"probability": 0.26,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Q3, 2021",
|
||||
"probability": 0.34951456310679613,
|
||||
"probability": 0.42,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Q4, 2021",
|
||||
"probability": 0.1650485436893204,
|
||||
"probability": 0.18,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Maybe later",
|
||||
"probability": 0.1359223300970874,
|
||||
"probability": 0.13,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -605,17 +605,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Worse than the 2012 record",
|
||||
"probability": 0.25,
|
||||
"probability": 0.2604166666666667,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Worse than 2020, but not worse than 2012",
|
||||
"probability": 0.27,
|
||||
"probability": 0.23958333333333337,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Not worse than 2020",
|
||||
"probability": 0.48,
|
||||
"probability": 0.5,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -629,32 +629,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Marcus Söder (CSU)",
|
||||
"probability": 0.32291666666666674,
|
||||
"probability": 0.2767857142857143,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Armin Laschet (CDU)",
|
||||
"probability": 0.46875,
|
||||
"probability": 0.4017857142857143,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Another member of CDU/CSU",
|
||||
"probability": 0.04166666666666667,
|
||||
"probability": 0.03571428571428572,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "A member of SPD",
|
||||
"probability": 0.05208333333333334,
|
||||
"probability": 0.044642857142857144,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "A member of the Green party",
|
||||
"probability": 0.10416666666666669,
|
||||
"probability": 0.23214285714285715,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Someone else",
|
||||
"probability": 0.010416666666666668,
|
||||
"probability": 0.00892857142857143,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -668,27 +668,27 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "in Q1, 2021",
|
||||
"probability": 0.03296703296703297,
|
||||
"probability": 0.0707070707070707,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in Q2, 2021",
|
||||
"probability": 0.3296703296703297,
|
||||
"probability": 0.33333333333333337,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in Q3, 2021",
|
||||
"probability": 0.18681318681318682,
|
||||
"probability": 0.17171717171717174,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "in Q4, 2021",
|
||||
"probability": 0.2087912087912088,
|
||||
"probability": 0.19191919191919193,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Perhaps later",
|
||||
"probability": 0.2417582417582418,
|
||||
"probability": 0.23232323232323235,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -702,7 +702,7 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "USA",
|
||||
"probability": 0.03,
|
||||
"probability": 0.01,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -712,12 +712,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Germany",
|
||||
"probability": 0.35,
|
||||
"probability": 0.38,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "United Kingdom",
|
||||
"probability": 0.08,
|
||||
"probability": 0.07,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -731,22 +731,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "USA",
|
||||
"probability": 0.8712871287128712,
|
||||
"probability": 0.88,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "France",
|
||||
"probability": 0.039603960396039604,
|
||||
"probability": 0.04,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Germany",
|
||||
"probability": 0.0297029702970297,
|
||||
"probability": 0.03,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "United Kingdom",
|
||||
"probability": 0.0594059405940594,
|
||||
"probability": 0.05,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -798,12 +798,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.95,
|
||||
"probability": 0.9509803921568627,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.05,
|
||||
"probability": 0.04901960784313725,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -817,12 +817,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.88,
|
||||
"probability": 0.92,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.12,
|
||||
"probability": 0.08,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
|
|
@ -871,37 +871,37 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Markus Söder",
|
||||
"probability": 0.35524640286087616,
|
||||
"probability": 0.403238358456856,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Olaf Scholz",
|
||||
"probability": 0.034158307967391936,
|
||||
"probability": 0.034895627174151005,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Annalena Baerbock",
|
||||
"probability": 0.0807378188320173,
|
||||
"probability": 0.08248057332072055,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Alice Weidel",
|
||||
"probability": 0.008793227793586043,
|
||||
"probability": 0.008983032737900258,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Jens Spahn",
|
||||
"probability": 0.017414039355925302,
|
||||
"probability": 0.01778992757897894,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Armin Laschet",
|
||||
"probability": 0.42291238435818584,
|
||||
"probability": 0.38282122638309113,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Robert Habeck",
|
||||
"probability": 0.0807378188320173,
|
||||
"probability": 0.06979125434830201,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1806,57 +1806,57 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Conservatives",
|
||||
"probability": 0.44229638394840987,
|
||||
"probability": 0.4403774895962038,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.49144042660934434,
|
||||
"probability": 0.4893083217735598,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Liberal Democrats",
|
||||
"probability": 0.004400959044262785,
|
||||
"probability": 0.004381865568121431,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Reform UK",
|
||||
"probability": 0.017344956233270977,
|
||||
"probability": 0.017269705474360936,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "SDP",
|
||||
"probability": 0.004400959044262785,
|
||||
"probability": 0.004381865568121431,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Heritage Party",
|
||||
"probability": 0.0017656542273389614,
|
||||
"probability": 0.0017579939704439273,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "UKIP",
|
||||
"probability": 0.0017656542273389614,
|
||||
"probability": 0.0017579939704439273,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Womens Equality Party",
|
||||
"probability": 0.0017656542273389614,
|
||||
"probability": 0.0017579939704439273,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "North East Party",
|
||||
"probability": 0.004400959044262785,
|
||||
"probability": 0.004381865568121431,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Sam Lee (Ind)",
|
||||
"probability": 0.004400959044262785,
|
||||
"probability": 0.008720346328637699,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Thelma Walker (either as Ind or NIP)",
|
||||
"probability": 0.026017434349906464,
|
||||
"probability": 0.0259045582115414,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1869,22 +1869,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Under 5%",
|
||||
"probability": 0.5433431584928442,
|
||||
"probability": 0.5772727913500711,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "5-10%",
|
||||
"probability": 0.3024610248943499,
|
||||
"probability": 0.278867163821419,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "10-20%",
|
||||
"probability": 0.10082034163144997,
|
||||
"probability": 0.10070203137995686,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Over 20%",
|
||||
"probability": 0.05337547498135587,
|
||||
"probability": 0.04315801344855294,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1925,92 +1925,92 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Sadiq Khan (Lab)",
|
||||
"probability": 0.901479561045341,
|
||||
"probability": 0.8759566247820383,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shaun Bailey (Cons)",
|
||||
"probability": 0.044215426089366724,
|
||||
"probability": 0.035038264991281536,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Sian Berry (Green)",
|
||||
"probability": 0.004619522128739807,
|
||||
"probability": 0.004532312884444377,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "David Kurten (Heritage)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Farah London (Ind)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Luisa Porritt (Lib Dem)",
|
||||
"probability": 0.004619522128739807,
|
||||
"probability": 0.004532312884444377,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Brian Rose (Ind)",
|
||||
"probability": 0.018206351919151004,
|
||||
"probability": 0.05358793469254823,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Mandu Reid (WEP)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Peter Gammons (UKIP)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Piers Corbyn",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Nims Obunge (Ind)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Count Binface",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "DrillMinister",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Winston McKenzie",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Kam Balayev (Renew)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Laurence Fox (Reclaim)",
|
||||
"probability": 0.004619522128739807,
|
||||
"probability": 0.004532312884444377,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Max Fosh (Ind)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Valerie Brown (Burning Pink)",
|
||||
"probability": 0.001853341213326749,
|
||||
"probability": 0.00181835307339984,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -2278,172 +2278,177 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Jackson Carlaw",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Douglas Ross",
|
||||
"probability": 0.04879191719970918,
|
||||
"probability": 0.04861506274835883,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Michelle Ballantyne",
|
||||
"probability": 0.003304631842211379,
|
||||
"probability": 0.0032926536522792835,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Monica Lennon",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "George Galloway",
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Alex Salmond",
|
||||
"probability": 0.01626397239990306,
|
||||
"probability": 0.01620502091611961,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Anas Sarwar",
|
||||
"probability": 0.02439595859985459,
|
||||
"probability": 0.04861506274835883,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Andy Murray",
|
||||
"probability": 0.0016556139568763592,
|
||||
"probability": 0.0016496129076289422,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Angus Robertson",
|
||||
"probability": 0.13824376539917602,
|
||||
"probability": 0.16529121334442004,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "David Coburn",
|
||||
"probability": 0.0016556139568763592,
|
||||
"probability": 0.0016496129076289422,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Derek Mackay",
|
||||
"probability": 0.02439595859985459,
|
||||
"probability": 0.024307531374179413,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Humza Yousaf",
|
||||
"probability": 0.0638048147996197,
|
||||
"probability": 0.07513236970200911,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Jeane Freeman",
|
||||
"probability": 0.01626397239990306,
|
||||
"probability": 0.012335165174956718,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "John Swinney",
|
||||
"probability": 0.11849465605643658,
|
||||
"probability": 0.11806515238887144,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Keith Brown",
|
||||
"probability": 0.0638048147996197,
|
||||
"probability": 0.0635735435940077,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Mhairi Black",
|
||||
"probability": 0.03190240739980985,
|
||||
"probability": 0.03178677179700385,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Michael Matheson",
|
||||
"probability": 0.012380038692463523,
|
||||
"probability": 0.012335165174956718,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Neil Findlay",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Peter Murrell",
|
||||
"probability": 0.012380038692463523,
|
||||
"probability": 0.012335165174956718,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Pete Wishart",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Philippa Whitford",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Ruth Davidson",
|
||||
"probability": 0.03190240739980985,
|
||||
"probability": 0.024307531374179413,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shona Robison",
|
||||
"probability": 0.01626397239990306,
|
||||
"probability": 0.01620502091611961,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Stewart Hosie",
|
||||
"probability": 0.01626397239990306,
|
||||
"probability": 0.01620502091611961,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Stuart Campbell",
|
||||
"probability": 0.0016556139568763592,
|
||||
"probability": 0.0016496129076289422,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Tasmin Ahmed-Sheikh",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Tommy Sheppard",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Willie Rennie",
|
||||
"probability": 0.008212500914802535,
|
||||
"probability": 0.00818273333388218,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Richard Leonard",
|
||||
"probability": 0.004126679564154508,
|
||||
"probability": 0.004111721724985573,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Kate Forbes",
|
||||
"probability": 0.11849465605643658,
|
||||
"probability": 0.09182845185801113,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Ash Denham",
|
||||
"probability": 0.01626397239990306,
|
||||
"probability": 0.012335165174956718,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shirley-Anne Somerville",
|
||||
"probability": 0.03190240739980985,
|
||||
"probability": 0.024307531374179413,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Michael Russell",
|
||||
"probability": 0.03190240739980985,
|
||||
"probability": 0.024307531374179413,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Joanna Cherry",
|
||||
"probability": 0.07540569021773237,
|
||||
"probability": 0.0635735435940077,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Andrew Wilson",
|
||||
"probability": 0.012380038692463523,
|
||||
"probability": 0.012335165174956718,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -2512,27 +2517,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "SNP",
|
||||
"probability": 0.02666987448435308,
|
||||
"probability": 0.026276647470071912,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.3627102929872019,
|
||||
"probability": 0.3970693395477533,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Conservatives",
|
||||
"probability": 0.5926638774300685,
|
||||
"probability": 0.5164196612615289,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Greens",
|
||||
"probability": 0.008977977549188167,
|
||||
"probability": 0.008845604098836089,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Liberal Democrats",
|
||||
"probability": 0.008977977549188167,
|
||||
"probability": 0.008845604098836089,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Alba",
|
||||
"probability": 0.04254314352297357,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
14749
data/metaforecasts.json
14749
data/metaforecasts.json
File diff suppressed because one or more lines are too long
|
@ -1,64 +1,4 @@
|
|||
[
|
||||
{
|
||||
"title": "Will the US have fewer than 35,000 new COVID-19 cases on any day before April 7, 2021?",
|
||||
"url": "https://polymarket.com/market/will-the-us-have-fewer-than-35000-new-covid-19-cases-on-any-day-before-april-7-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": " This is a market on whether there will be a single day after the creation of this market and prior to the resolution date, April 7, 2021, 8 PM ET, with fewer than 35,000 recorded COVID-19 cases in the United States. This market will resolve to “Yes\" if on any single day prior to the resolution date there are fewer than 35,000 COVID-19 cases recorded. This market will resolve to “No\" if there is no single day the United States records fewer than 35,000 COVID-19 cases according to the resolution source. The resolution source for this market will be https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases, the CDC's official count of Coronavirus cases. The resolution source will be reviewed once daily at 8 PM ET, and only data as listed on 8 PM ET each day prior to and including the resolution date will be considered. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.07753824631498304305713109847982703",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.922461753685016956942868901520173",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "504",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will Joe Biden's disapproval rating be 40% or higher on April 7?",
|
||||
"url": "https://polymarket.com/market/will-joe-bidens-disapproval-rating-be-40-or-higher-on-april-7",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether Joe Biden's disapproval rating will be 40% or higher on April 7, 2021. The resolution source will be FiveThirtyEight's approval rating poll aggregator, indicated by the orange trend line here, https://projects.fivethirtyeight.com/biden-approval-rating/. Changes in the methodology by which FiveThirtyEight calculates the disapproval rating will have no bearing on the resolution of this market. If for any reason the resolution source is unavailable on the resolution date, resolution will be delayed up to 48 hours. If still unavailable following that delay, this market will resolve to 50/50. If Joe Biden is not President on the resolution date, this market will resolve according to the most recent available disapproval rating. The resolution date for this market will be on April 8, 2021 at 12:00 PM ET according to data published for the day of April 7, 2021. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.4599317644432323598775687301012367",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.5400682355567676401224312698987633",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "70",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Floyd Mayweather beat Logan Paul in their boxing exhibition match?",
|
||||
"url": "https://polymarket.com/market/will-floyd-mayweather-beat-logan-paul-in-their-boxing-exhibition-match",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether Floyd Mayweather will win his boxing exhibition match against Logan Paul set to take place on February 20th, 2021. If Floyd Mayweather is declared the winner of this bout, either by knockout or by judgement, this market will resolve “Yes.” If Logan Paul is declared the winner, or this fight is declared a draw, this market will resolve to “No”. If this match is, for any reason, postponed to a date earlier than May 1st, 2021, the same market resolution conditions will apply for whenever the fight is rescheduled. In the event the boxing match does not take place before then, the market will resolve to .90 for \"Yes\" and .10 for \"No\", which is in line with existing market odds at time of deployment. More info can be found about this fight on the Fanmio website here: https://fanmio.com/products/floyd-mayweather-vs-logan-paul-special-exhibition-fight. In the event of ambiguity in regards to the outcome, this market will be resolved in good faith by the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.8974107967751541143208149317438613",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.1025892032248458856791850682561387",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "798",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Donald Trump be President of the USA on July 31, 2021?",
|
||||
"url": "https://polymarket.com/market/will-donald-trump-be-president-of-the-usa-on-july-31-2021",
|
||||
|
@ -67,142 +7,36 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.01394232389372196757070549823602875",
|
||||
"probability": "0.0399522190901281473183703149667169",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9860576761062780324292945017639713",
|
||||
"probability": "0.9600477809098718526816296850332831",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "15",
|
||||
"numforecasts": "27",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "What will monthly NFT trading volume be on April 13, 2021?",
|
||||
"url": "https://polymarket.com/market/what-will-monthly-nft-trading-volume-be-on-april-13-2021-1",
|
||||
"title": "Will the US have fewer than 35,000 new COVID-19 cases on any day before April 7, 2021?",
|
||||
"url": "https://polymarket.com/market/will-the-us-have-fewer-than-35000-new-covid-19-cases-on-any-day-before-april-7-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on what the monthly trading volume will be for non-fungible-tokens (NFTs) on April 13, 2021. The resolution source for this market will be Coinranking’s aggregation of 30-day NFT trading volume, as displayed in USD by the resolution source, https://coinranking.com/nfts. The total trading volume (in the last 30 days) as listed by Coinranking will be checked at 12:00 PM ET on April 13, 2021. Whichever bracket the total trading volume falls into at that time will be the bracket that this market resolves to. Data will be rounded down to the nearest million dollars for the resolution of this market (e.g. 50.3, 50.5, 50.7 million dollars are all rounded down to 50 million dollars). In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "$80M or Less",
|
||||
"probability": "0.05744360602032953362501417765827628",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "$81-105M",
|
||||
"probability": "0.6714313199989959113997850001650252",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "$106-120M",
|
||||
"probability": "0.1558340346479539708610918819061469",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "$121-135M",
|
||||
"probability": "0.06367479538279264655713628485976061",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "$136M or More",
|
||||
"probability": "0.05161624394992793755697265541079074",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "203",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will weekly jobless claims exceed 650K for the week ending on April 3?",
|
||||
"url": "https://polymarket.com/market/will-weekly-jobless-claims-exceed-650k-for-the-week-ending-on-april-3",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether the number of Americans that file weekly jobless claims will exceed 650,000 for the week ending on Saturday, April 3, 2021. This market will resolve to “Yes” if the United States Department of Labor reports that there were more than 650,000 seasonally adjusted initial claims for unemployment insurance for the week ending on April 3, 2021. This market will resolve to “No” if the United States Department of Labor reports that there were 650,000 or less seasonally adjusted initial claims for unemployment insurance for the week ending on April 3, 2021. The resolution source for this market will be the United States Department of Labor’s Weekly Uninsurance Claims report for the week ending on Saturday, April 3, 2021, expected to be released on Thursday, April 8. Resolution of this market will take place upon release of the aforementioned data. .\n",
|
||||
"description": " This is a market on whether there will be a single day after the creation of this market and prior to the resolution date, April 7, 2021, 8 PM ET, with fewer than 35,000 recorded COVID-19 cases in the United States. This market will resolve to “Yes\" if on any single day prior to the resolution date there are fewer than 35,000 COVID-19 cases recorded. This market will resolve to “No\" if there is no single day the United States records fewer than 35,000 COVID-19 cases according to the resolution source. The resolution source for this market will be https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases, the CDC's official count of Coronavirus cases. The resolution source will be reviewed once daily at 8 PM ET, and only data as listed on 8 PM ET each day prior to and including the resolution date will be considered. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.4061604608970735746980251586486453",
|
||||
"probability": "0.07465307001144303222259539896004477",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.5938395391029264253019748413513547",
|
||||
"probability": "0.9253469299885569677774046010399552",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "94",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will the federal minimum wage be $9.50 per hour or higher by April 1?",
|
||||
"url": "https://polymarket.com/market/will-the-federal-minimum-wage-be-9-50-per-hour-or-higher-by-april-1-1",
|
||||
"address": "0x36BB6f09327d1A7D0930668345655d6A6e3c6b20",
|
||||
"description": "This is a market on if the federal minimum wage will be $9.50 per hour or higher by April 1, 12:00pm EST. This market will resolve to \"Yes\" if the federal minimum wage in effect for covered non-exempt employees is $9.50 or more per hour at any point prior to the resolution date, and \"No\" otherwise. The primary resolution source for this market will be the U.S. Department of Labor's website, https://www.dol.gov/.",
|
||||
"outcomes": [
|
||||
"Yes",
|
||||
"No"
|
||||
],
|
||||
"options": []
|
||||
},
|
||||
{
|
||||
"title": "Will Bitcoin ($BTC) be above $55k on April 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-bitcoin-btc-be-above-55k-on-april-1-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if the USD price of Bitcoin $BTC will be above $55000 on April 1, 2021, 12:00 PM ET, according to coinmarketcap.com/currencies/bitcoin/. This market will resolve to “Yes“ if BTC is trading above $55000 according to Coinmarketcap on the resolution date, and “No“ otherwise. If price data is temporarily unavailable on Coinmarketcap at the time of resolution, coingecko.com/en/coins/bitcoin will instead be referenced. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.811137805040424106412252281387405",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.188862194959575893587747718612595",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "3177",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will 100 million people have received a dose of an approved COVID-19 vaccine in the US by April 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-100-million-people-have-received-a-dose-of-an-approved-covid-19-vaccine-in-the-us-by-april-1-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 100 million people in The United States of America will have initiated vaccination, according to the CDC COVID tracker, by the resolution date, April 1, 2021, 12 PM EST / 1 PM EDT. This market will resolve to \"Yes\" if 100 million people or more are listed as having received their initial dose of vaccination by the resolution source. This only concerns the first dose of vaccination. For vaccines requiring two doses for inoculation, this market considers only the first dose to be considered having initiated vaccination. This market will resolve to \"No\" if, for any reason, fewer than 100 million people have initiated vaccination by the resolution date. The resolution source for this market will be the official data published by the CDC available at https://covid.cdc.gov/covid-data-tracker/#vaccinations\n\nThis market will resolve according to the data as available immediately at the time of resolution, and resolution will not be delayed for the purpose of waiting for updated data from a specific date.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.07304455174120395584463620390808104",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.926955448258796044155363796091919",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "8243",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will Donald Trump be President of the USA on March 31, 2021?",
|
||||
"url": "https://polymarket.com/market/will-donald-trump-be-president-of-the-usa-on-march-31-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if Donald Trump will be President of the United States on March 31, 2021, 12pm EST. This market will resolve to “Yes“ if, on the resolution date, Donald Trump is the current President of the United States, officially substantiated by official US government sources, like the links provided as the resolution source. If, for any reason, Donald Trump is not the sitting President of the United States on that date, this market will resolve to “No\". The resolution sources are: 1. https://www.loc.gov/rr/print/list/057_chron.html , 2. https://history.house.gov/Institution/Presidents-Coinciding/Presidents-Coinciding/ and 3. https://www.whitehouse.gov/. \n\nIf any of these 3 sources list Donald Trump officially as the current sitting president on the resolution date, this market will resolve to \"Yes\". In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.0002594014467534253739238797362305842",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9997405985532465746260761202637694",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "4314",
|
||||
"numforecasts": "522",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -213,18 +47,178 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.9514096993620200431360981712878928",
|
||||
"probability": "0.937185702542547745508723154303628",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.04859030063797995686390182871210717",
|
||||
"probability": "0.062814297457452254491276845696372",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "4",
|
||||
"numforecasts": "53",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will weekly jobless claims exceed 650K for the week ending on April 3?",
|
||||
"url": "https://polymarket.com/market/will-weekly-jobless-claims-exceed-650k-for-the-week-ending-on-april-3",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether the number of Americans that file weekly jobless claims will exceed 650,000 for the week ending on Saturday, April 3, 2021. This market will resolve to “Yes” if the United States Department of Labor reports that there were more than 650,000 seasonally adjusted initial claims for unemployment insurance for the week ending on April 3, 2021. This market will resolve to “No” if the United States Department of Labor reports that there were 650,000 or less seasonally adjusted initial claims for unemployment insurance for the week ending on April 3, 2021. The resolution source for this market will be the United States Department of Labor’s Weekly Uninsurance Claims report for the week ending on Saturday, April 3, 2021, expected to be released on Thursday, April 8. Resolution of this market will take place upon release of the aforementioned data. .\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.4654295355935182330616479112119514",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.5345704644064817669383520887880486",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "110",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Floyd Mayweather beat Logan Paul in their boxing exhibition match?",
|
||||
"url": "https://polymarket.com/market/will-floyd-mayweather-beat-logan-paul-in-their-boxing-exhibition-match",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether Floyd Mayweather will win his boxing exhibition match against Logan Paul set to take place on February 20th, 2021. If Floyd Mayweather is declared the winner of this bout, either by knockout or by judgement, this market will resolve “Yes.” If Logan Paul is declared the winner, or this fight is declared a draw, this market will resolve to “No”. If this match is, for any reason, postponed to a date earlier than May 1st, 2021, the same market resolution conditions will apply for whenever the fight is rescheduled. In the event the boxing match does not take place before then, the market will resolve to .90 for \"Yes\" and .10 for \"No\", which is in line with existing market odds at time of deployment. More info can be found about this fight on the Fanmio website here: https://fanmio.com/products/floyd-mayweather-vs-logan-paul-special-exhibition-fight. In the event of ambiguity in regards to the outcome, this market will be resolved in good faith by the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.898486201143934842646828594587153",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.101513798856065157353171405412847",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "807",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will 1 billion doses of a COVID-19 vaccine have been administered globally by April 26, 2021?",
|
||||
"url": "https://polymarket.com/market/will-1-billion-doses-of-a-covid-19-vaccine-have-been-administered-globally-by-april-26-2021-1",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 1 billion doses of a COVID-19 will have been administered globally prior to April 26, 2021, 12 PM ET. This market will resolve to “Yes” if at least 1 billion doses of a COVID-19 vaccine are administered globally prior to the resolution date, April 26, 2021, 12 PM ET, and “No” otherwise. The resolution source for this market will be the data published to Our World in Data’s coronavirus (COVID-19) vaccinations dashboard, available at https://ourworldindata.org/covid-vaccinations, specifically the cumulative COVID-19 vaccination doses administered. This market will resolve according to the data as available immediately at the time of resolution, and resolution will not be delayed for the purpose of waiting for updated data from a specific date.\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.66316561303638583639322299764386",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.33683438696361416360677700235614",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "16",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Bitcoin ($BTC) be above $55k on April 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-bitcoin-btc-be-above-55k-on-april-1-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if the USD price of Bitcoin $BTC will be above $55000 on April 1, 2021, 12:00 PM ET, according to coinmarketcap.com/currencies/bitcoin/. This market will resolve to “Yes“ if BTC is trading above $55000 according to Coinmarketcap on the resolution date, and “No“ otherwise. If price data is temporarily unavailable on Coinmarketcap at the time of resolution, coingecko.com/en/coins/bitcoin will instead be referenced. In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).\n\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.9235015831361897357511964892828881",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.07649841686381026424880351071711195",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "3457",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will the federal minimum wage be $9.50 per hour or higher by April 1?",
|
||||
"url": "https://polymarket.com/market/will-the-federal-minimum-wage-be-9-50-per-hour-or-higher-by-april-1-1",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if the federal minimum wage will be $9.50 per hour or higher by April 1, 12:00pm EST. This market will resolve to \"Yes\" if the federal minimum wage in effect for covered non-exempt employees is $9.50 or more per hour at any point prior to the resolution date, and \"No\" otherwise. The primary resolution source for this market will be the U.S. Department of Labor's website, https://www.dol.gov/.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.0007799905818548978341181015069580178",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.999220009418145102165881898493042",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "188",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will 100 million people have received a dose of an approved COVID-19 vaccine in the US by April 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-100-million-people-have-received-a-dose-of-an-approved-covid-19-vaccine-in-the-us-by-april-1-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 100 million people in The United States of America will have initiated vaccination, according to the CDC COVID tracker, by the resolution date, April 1, 2021, 12 PM EST / 1 PM EDT. This market will resolve to \"Yes\" if 100 million people or more are listed as having received their initial dose of vaccination by the resolution source. This only concerns the first dose of vaccination. For vaccines requiring two doses for inoculation, this market considers only the first dose to be considered having initiated vaccination. This market will resolve to \"No\" if, for any reason, fewer than 100 million people have initiated vaccination by the resolution date. The resolution source for this market will be the official data published by the CDC available at https://covid.cdc.gov/covid-data-tracker/#vaccinations\n\nThis market will resolve according to the data as available immediately at the time of resolution, and resolution will not be delayed for the purpose of waiting for updated data from a specific date.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.02261135370733015122541638960314871",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9773886462926698487745836103968513",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "8474",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will Donald Trump be President of the USA on March 31, 2021?",
|
||||
"url": "https://polymarket.com/market/will-donald-trump-be-president-of-the-usa-on-march-31-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if Donald Trump will be President of the United States on March 31, 2021, 12pm EST. This market will resolve to “Yes“ if, on the resolution date, Donald Trump is the current President of the United States, officially substantiated by official US government sources, like the links provided as the resolution source. If, for any reason, Donald Trump is not the sitting President of the United States on that date, this market will resolve to “No\". The resolution sources are: 1. https://www.loc.gov/rr/print/list/057_chron.html , 2. https://history.house.gov/Institution/Presidents-Coinciding/Presidents-Coinciding/ and 3. https://www.whitehouse.gov/. \n\nIf any of these 3 sources list Donald Trump officially as the current sitting president on the resolution date, this market will resolve to \"Yes\". In the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.0003722103355381477775719659336543291",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9996277896644618522224280340663457",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "4416",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will American mask usage be 75% or higher on April 14th, 2021?",
|
||||
"url": "https://polymarket.com/market/will-american-mask-usage-be-75-or-higher-on-april-14th-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether the American \"observed mask usage\" metric will be above 75% on April 14th, 2021. This market will resolve when data is first made available for the date of April 14th, 2021. This market will resolve to \"Yes\" if the metric is 75% or higher on the resolution date, and “No” otherwise. There will be no delay in resolutions for any incoming data updates or revisions past the initial publication of data for April 14th. The resolution source for this market will be the Institute for Health Metrics and Evaluation’s website, https://covid19.healthdata.org/united-states-of-america?view=mask-use&tab=trend. Specific, non-rounded data is available for download at http://www.healthdata.org/covid/data-downloads. This data will be prioritized for resolution in the event that the headline number displayed on Health Data's graph does not accurately reflect the specific, non-rounded datapoint. Observed mask use represents the percentage of the population who say they always wear a mask in public. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.1099230898121289621386529149208585",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.8900769101878710378613470850791415",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "94",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will the Tokyo Summer Olympics be cancelled or postponed by May 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-the-tokyo-summer-olympics-be-cancelled-or-postponed",
|
||||
|
@ -233,18 +227,38 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.07590406992189588515175078805599503",
|
||||
"probability": "0.0643262684347852793581318329432571",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.924095930078104114848249211944005",
|
||||
"probability": "0.9356737315652147206418681670567429",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "411",
|
||||
"numforecasts": "419",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will the workers at Amazon's Bessemer facility unionize by May 5?",
|
||||
"url": "https://polymarket.com/market/will-the-workers-at-amazons-bessemer-facility-unionize-by-may-5",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether the workers at the Amazon fulfillment center in Bessemer, Alabama, will win their effort to unionize by May 5, 2021, 12:00 PM ET. This market will resolve to “Yes” if the National Labor Relations Board certifies the RETAIL, WHOLESALE AND DEPARTMENT STORE UNION as the representative of the workers at the Amazon Bessemer facility for the purposes of collective bargaining (Case Number: 10-RC-269250, https://www.nlrb.gov/case/10-RC-269250). This market will resolve to “No” otherwise. The resolution source for this market will be an official “Certification of Representative” decision from the National Labor Relations Board. \n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.2084574486646862799550090404443954",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.7915425513353137200449909595556046",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "47",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Donald Trump be federally charged by June 1st? ",
|
||||
"url": "https://polymarket.com/market/will-donald-trump-be-federally-charged-by-june-1st-1",
|
||||
|
@ -253,36 +267,16 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.04200290899238056378530487686460393",
|
||||
"probability": "0.02570884192511618168598180798571647",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9579970910076194362146951231353961",
|
||||
"probability": "0.9742911580748838183140181920142835",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "89",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will Uniswap v3 launch before April 30, 2021?",
|
||||
"url": "https://polymarket.com/market/will-uniswap-v3-launch-before-april-30-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if Uniswap v3 will launch before April 30th, 2021, 12:00 am ET. “Launch” in this context can be defined as being deployed and usable on the Ethereum mainnet and publicly announced via the official Uniswap Twitter and/or Blog. V3 can be defined as Uniswap v3.0.0 or greater. If Uniswap v3 is officially announced and is deployed on the mainnet of a given L2 scaling solution, with or without some bridging mechanism from Ethereum mainnet, the market will still resolve to \"Yes\".",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.02304787940068400388231862024485495",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9769521205993159961176813797551451",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "726",
|
||||
"numforecasts": "95",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
|
@ -293,76 +287,61 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.1283821729293469028524210423415517",
|
||||
"probability": "0.1531273744175666186166761496243497",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.8716178270706530971475789576584483",
|
||||
"probability": "0.8468726255824333813833238503756503",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "75",
|
||||
"numforecasts": "78",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will DeFi Dominance on CoinGecko be 5.5% or higher on March 30?",
|
||||
"url": "https://polymarket.com/market/will-de-fi-dominance-on-coin-gecko-be-5-5-or-higher-on-march-30",
|
||||
"title": "Will Uniswap v3 launch before April 30, 2021?",
|
||||
"url": "https://polymarket.com/market/will-uniswap-v3-launch-before-april-30-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if the DeFi Dominance metric, according to CoinGecko, will be 5.5% or higher on March 30 2021, 12:00 PM ET. This market will resolve to “Yes“ if DeFi Dominance is listed as being 5.5% or higher on the resolution date. The market will resolve to “No“ if DeFi dominance is less than 5.5% at that time of resolution. The resolution source for this market will be the metric currently listed on https://www.coingecko.com/en/defi as “Defi Dominance (vs. Global)”. Any rounding done is at CoinGecko’s discretion, and only the metric Defi Dominance (vs. Global) will be considered without observation of the underlying data. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC). \n",
|
||||
"description": "This is a market on if Uniswap v3 will launch before April 30th, 2021, 12:00 am ET. “Launch” in this context can be defined as being deployed and usable on the Ethereum mainnet and publicly announced via the official Uniswap Twitter and/or Blog. V3 can be defined as Uniswap v3.0.0 or greater. If Uniswap v3 is officially announced and is deployed on the mainnet of a given L2 scaling solution, with or without some bridging mechanism from Ethereum mainnet, the market will still resolve to \"Yes\".",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.001584751006425928853977388179070808",
|
||||
"probability": "0.0183925492363933636702412378864124",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9984152489935740711460226118209292",
|
||||
"probability": "0.9816074507636066363297587621135876",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "102",
|
||||
"stars": 2
|
||||
"numforecasts": "731",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will American mask usage be 75% or higher on April 14th, 2021?",
|
||||
"url": "https://polymarket.com/market/will-american-mask-usage-be-75-or-higher-on-april-14th-2021",
|
||||
"title": "How many charges will Derek Chauvin be convicted of?",
|
||||
"url": "https://polymarket.com/market/how-many-charges-will-derek-chauvin-be-convicted-of",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether the American \"observed mask usage\" metric will be above 75% on April 14th, 2021. This market will resolve when data is first made available for the date of April 14th, 2021. This market will resolve to \"Yes\" if the metric is 75% or higher on the resolution date, and “No” otherwise. There will be no delay in resolutions for any incoming data updates or revisions past the initial publication of data for April 14th. The resolution source for this market will be the Institute for Health Metrics and Evaluation’s website, https://covid19.healthdata.org/united-states-of-america?view=mask-use&tab=trend. Specific, non-rounded data is available for download at http://www.healthdata.org/covid/data-downloads. This data will be prioritized for resolution in the event that the headline number displayed on Health Data's graph does not accurately reflect the specific, non-rounded datapoint. Observed mask use represents the percentage of the population who say they always wear a mask in public. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"description": "This market is on how many charges the jury will find Derek Chauvin guilty of. Chauvin is charged criminally in Minnesota on three counts, each of which he has pleaded not guilty to. The maximum number of charges that Chauvin can be convicted of is two. This market will resolve to the number of counts Derek Chauvin is convicted on: zero (not guilty on all counts), one (guilty on one count), or two (guilty on two counts). In the event of a \"hung jury\" or mistrial, this market will resolve to the lowest bracket, \"0\". If the trial is delayed, the market resolution will be postponed until the start of the new trial date. In the event of a judgement of acquittal, this market will still resolve to the number of charges Chauvin is convicted of. The resolution source for this market will be the official website of the Minnesota Judicial Branch, specifically the page for this specific case (27-CR-20-12646: State vs. Derek Chauvin) available at https://www.mncourts.gov/media/StateofMinnesotavDerekChauvin.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.1661397634672417208420309135621839",
|
||||
"name": "0",
|
||||
"probability": "0.4049934414491418985976385396658718",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.8338602365327582791579690864378161",
|
||||
"name": "1",
|
||||
"probability": "0.4567329434327637514445193511115605",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2",
|
||||
"probability": "0.1382736151180943499578421092225677",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "87",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will 225M COVID-19 vaccine doses have been administered in the US by Biden's 100th day in office? ",
|
||||
"url": "https://polymarket.com/market/will-225-m-covid-19-vaccine-doses-have-been-administered-in-the-us-by-biden-s-100th-day-in-office",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 225 million COVID-19 vaccine doses will be administered in the United States by April 29, 2021, 12:00 PM ET (Biden’s 100th day in office). This market will resolve to \"Yes\" if 225 million or more total COVID-19 vaccine doses are administered by the resolution date. This market will resolve to \"No\" if, for any reason, fewer than 225 million COVID-19 vaccines doses are administered by the resolution date. The resolution source for this market will be the number of total COVID-19 vaccine doses administered, as indicated by the CDC’s Covid Data tracker (https://covid.cdc.gov/covid-data-tracker/#vaccinations). This market will resolve according to the data as available immediately at the time of resolution, April 29, 2021, 12:00 PM ET, and resolution will not be delayed for the purpose of waiting for updated data from a specific date. ",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.8625280409263922776450772413925053",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.1374719590736077223549227586074947",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "273",
|
||||
"numforecasts": "92",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
|
@ -373,16 +352,56 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.3074187289292383718296906672878704",
|
||||
"probability": "0.3200857701022042815449929261271158",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.6925812710707616281703093327121296",
|
||||
"probability": "0.6799142298977957184550070738728842",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "39",
|
||||
"numforecasts": "54",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will Matt Gaetz continue to hold Congressional office through June 1, 2021?",
|
||||
"url": "https://polymarket.com/market/will-matt-gaetz-continue-to-hold-congressional-office-through-june-1-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether Matt Gaetz will hold the office of U.S. representative for Florida's 1st Congressional District from the date of the creation of this market through June 1, 2021, 12:00 PM ET, the resolution date. This market will resolve to \"Yes\" in the event that Matt Gaetz continues to hold the office of U.S. representative for Florida's 1st congressional district on the resolution date, and “No” otherwise. In the event that Matt Gaetz resigns, is removed from office, or is no longer in office for any reason prior to the resolution date, this market will resolve to \"No\" immediately. The resolution source for this market will be https://www.house.gov/representatives. In the event of ambiguity in terms of the market outcome, the market will be resolved at the sole discretion of the Markets Integrity Committee (MIC). ",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.7461002333060828063125709223827312",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.2538997666939171936874290776172688",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "47",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will 225M COVID-19 vaccine doses have been administered in the US by Biden's 100th day in office? ",
|
||||
"url": "https://polymarket.com/market/will-225-m-covid-19-vaccine-doses-have-been-administered-in-the-us-by-biden-s-100th-day-in-office",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 225 million COVID-19 vaccine doses will be administered in the United States by April 29, 2021, 12:00 PM ET (Biden’s 100th day in office). This market will resolve to \"Yes\" if 225 million or more total COVID-19 vaccine doses are administered by the resolution date. This market will resolve to \"No\" if, for any reason, fewer than 225 million COVID-19 vaccines doses are administered by the resolution date. The resolution source for this market will be the number of total COVID-19 vaccine doses administered, as indicated by the CDC’s Covid Data tracker (https://covid.cdc.gov/covid-data-tracker/#vaccinations). This market will resolve according to the data as available immediately at the time of resolution, April 29, 2021, 12:00 PM ET, and resolution will not be delayed for the purpose of waiting for updated data from a specific date. ",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.8512879891880845638587947660033713",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.1487120108119154361412052339966287",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "319",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
|
@ -393,56 +412,112 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.05473473251674721078257169228566964",
|
||||
"probability": "0.0693152321242313510064873701903833",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.9452652674832527892174283077143304",
|
||||
"probability": "0.9306847678757686489935126298096167",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "98",
|
||||
"numforecasts": "102",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "How many more tweets will be on the @laurenboebert account on April 6, 2021?",
|
||||
"url": "https://polymarket.com/market/how-many-more-tweets-will-be-on-the-laurenboebert-account-on-april-6-2021",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on the number of tweets that will be posted to Lauren Boebert’s Twitter account prior to the resolution date, April 6, 2021 at 3:00 PM ET. \n\nAt 3:00 PM ET on the resolution date, the number of total tweets posted by the Twitter account @laurenboebert, shall exceed 3593 (the \"Baseline\") by the number or range identified in the contract, as indicated by the number under the label \"TWEETS\" on the account detail viewable on the desktop version of https://tweetdeck.twitter.com/. This account detail can be viewed by using a Twitter account to log into the website https://tweetdeck.twitter.com/, searching for @laurenboebert, then clicking the verified account labeled “@laurenboebert” from the search results. Should the total tweets reported by that source at that time appear not to include one or more tweets posted by @laurenboebert just before 3:00pm, and still available on that account's timeline at 3:00pm, Polymarket may use additional sources in determining whether any such tweet(s) should be included in the market's resolution. The number by which the total tweets on the resolution date exceeds the Baseline may not equal the number of tweets actually posted over that time period, in light of numerous factors, including but not limited to the fact that the account's total tweets upon launch of the market may differ from the Baseline, tweets may be deleted prior to the resolution date of this market, and specialized tweets such as quotes, retweets, replies, promoted tweets, may or may not be included in that total.\n\nNeither Lauren Boebert, nor any authorized user of the account in question, need be the author of any such tweets, nor must any authorized user maintain control of the account. Should the resolution source be unavailable at that date and time, for any reason other than deletion, deactivation, or a change in the privacy settings of the account, Polymarket may postpone settlement of this market until the source becomes available. In such a case, the account's total tweets will be measured once Polymarket becomes aware that the source has again become available. If Polymarket deems the source to be permanently unavailable, this market will resolve to the lowest bracket. Should an updated count of total tweets not be available from twitter.com at the date and time of expiration, due to apparent deletion, deactivation, suspension, or a change in privacy settings by a user of the account or by Twitter, this market will resolve to the lowest bracket. The blocking of one or more Twitter accounts by @mtgreenee will not be considered to render the settlement source unavailable.\n\nShould the navigation, layout, URL, or labeling of the elements of the settlement source be altered by Twitter or Tweetdeck prior to expiration (other than via deletion or deactivation of the account), this market will still be resolved according to the aforementioned formula, so long as Polymarket can reasonably determine the relevant number of total tweets from twitter.com. The merging, migration, or other combination of one or more Twitter accounts will not in and of itself cause the settlement source to be considered unavailable, so long as an updated count of total tweets can be determined according to the aforementioned formula, even if such combination causes an increase or decrease in that count that does not represent the number of tweets posted to the account during the time period in question.\n\nIn the event of ambiguity in terms of the market outcome, the market will be resolved in good faith at the sole discretion of the Markets Integrity Committee (MIC).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Less than 30",
|
||||
"probability": "0.05977087814512342460231132918776212",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "30-40",
|
||||
"probability": "0.1439788098513407830412705763776042",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "41-50",
|
||||
"probability": "0.3000648938131921379652501864987328",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "51-60",
|
||||
"probability": "0.3073822916839418221307989757808803",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "61-70",
|
||||
"probability": "0.1254828656686028461677836649370425",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "71-80",
|
||||
"probability": "0.03350564206579270952716467730458544",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "More than 80",
|
||||
"probability": "0.02981461877200627656542058991339278",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "208",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will there be more than 140 million confirmed COVID-19 cases globally by April 20, 2021?",
|
||||
"url": "https://polymarket.com/market/will-there-be-more-than-140-million-confirmed-covid-19-cases-globally-by-april-20-2021-1",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on the cumulative number of COVID-19 cases there will be globally by April 20, 2021, 12:00 PM ET. This market will resolve to “Yes” if there are more than 140 million confirmed cases of COVID-19 globally on or before the resolution date. This market will resolve to “No” if there are not more than 140 million confirmed cases of COVID-19 globally by the resolution date. The resolution source for this market will be the cumulative number of confirmed cases of COVID-19, globally, as indicated by the World Health Organization’s Coronavirus Disease Dashboard (https://covid19.who.int/).",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.7107874922024220164632925171348451",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.2892125077975779835367074828651549",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "54",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will the US have 200M total COVID-19 vaccines administered by Biden’s 100th day in office?",
|
||||
"url": "https://polymarket.com/market/will-the-us-have-200m-total-covid-19-vaccines-administered-by-bidens-100th-day-in-office",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on whether 200 million COVID-19 vaccine doses will be administered in the United States by April 29, 2021, 12:00 PM ET (Biden’s 100th day in office). This market will resolve to \"Yes\" if 200 million or more total COVID-19 vaccine doses are administered by the resolution date. This market will resolve to \"No\" if, for any reason, fewer than 200 million COVID-19 vaccines doses are administered by the resolution date. The resolution source for this market will be the number of total COVID-19 vaccine doses administered, as indicated by the CDC’s Covid Data tracker (https://covid.cdc.gov/covid-data-tracker/#vaccinations). This market will resolve according to the data as available immediately at the time of resolution, April 29, 2021, 12:00 PM ET, and resolution will not be delayed for the purpose of waiting for updated data from a specific date. \n\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.9843173166697513955671473084202553",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.01568268333024860443285269157974465",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "19",
|
||||
"stars": 3
|
||||
},
|
||||
{
|
||||
"title": "Will any Knicks game have greater than 20% attendance before the NBA season ends?",
|
||||
"url": "https://polymarket.com/market/will-any-knicks-game-have-greater-than-20-attendance-before-the-nba-season-ends",
|
||||
"platform": "PolyMarket",
|
||||
"address": "0xa8B8c6cd59ECDe225D62185Cd3cAdE606e51b545",
|
||||
"description": "This is a market on whether there will be a New York Knicks game at Madison Square Garden where more than 20% of the seats are filled by the end of the NBA season, including the playoffs. This market will resolve to “Yes” if there is any New York Knicks home game at Madison Square Garden, where official attendance is 3,963 or higher (3,963 is the lowest number that puts attendance over 20% of the 19,812 seating capacity at MSG for NBA games), before the end of the NBA season. This market will resolve to “No” if there is not a single New York Knicks home game at Madison Square Garden, where official attendance is higher than 3,963. The resolution source for this market will be the official attendance data provided in the NBA gamebooks (https://www.nba.com/stats/gamebooks/). The resolution date for this market will be the day the Knicks are eliminated from this NBA season. Resolution may be delayed in the event of a change or postponement in the NBA’s schedule.\n",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.722552112790316904876933165751827",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.277447887209683095123066834248173",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
"outcomes": [
|
||||
"Yes",
|
||||
"No"
|
||||
],
|
||||
"numforecasts": "55",
|
||||
"stars": 4
|
||||
},
|
||||
{
|
||||
"title": "Will there be enough signatures for a vote on the recall of Gov. Newsom by March 17?",
|
||||
"url": "https://polymarket.com/market/will-there-be-enough-signatures-for-a-vote-on-recall-of-gov-newsom-by-march-17",
|
||||
"platform": "PolyMarket",
|
||||
"description": "This is a market on if there will be enough petition signatures for a vote on the recall of California Governor Gavin Newson prior to March 17, 2021. This market will resolve to \"Yes\" if a recall election is triggered and \"No\" otherwise. The linked PredictIt question will be referenced as the leading resolution source, https://www.predictit.org/markets/detail/7039/Will-there-be-enough-signatures-by-Mar-17-for-a-vote-on-recall-of-Gov-Newsom. This market will resolve when the PredictIt market is resolved, to the same outcome.",
|
||||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": "0.9887645696991241916193178356973243",
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": "0.01123543030087580838068216430267569",
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"numforecasts": "1368",
|
||||
"stars": 3
|
||||
"options": []
|
||||
}
|
||||
]
|
File diff suppressed because it is too large
Load Diff
|
@ -580,27 +580,27 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "2020",
|
||||
"probability": 0.04483098717833767,
|
||||
"probability": 0.04493978069387021,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2021",
|
||||
"probability": 0.06401864969066619,
|
||||
"probability": 0.06417400683084666,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2022",
|
||||
"probability": 0.06895005828028333,
|
||||
"probability": 0.0691173827071724,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2023",
|
||||
"probability": 0.19080068143100512,
|
||||
"probability": 0.17975912277548084,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2024 or later",
|
||||
"probability": 0.6313996234197077,
|
||||
"probability": 0.6420097069926299,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -809,22 +809,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "2022 or earlier",
|
||||
"probability": 0.3964413291096583,
|
||||
"probability": 0.41877068864801714,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2023",
|
||||
"probability": 0.2011862236301139,
|
||||
"probability": 0.1937431037839943,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2024",
|
||||
"probability": 0.2011862236301139,
|
||||
"probability": 0.1937431037839943,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2025 or later",
|
||||
"probability": 0.2011862236301139,
|
||||
"probability": 0.1937431037839943,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -838,22 +838,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.7202247191011235,
|
||||
"probability": 0.7264988558352402,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Conservatives",
|
||||
"probability": 0.2340823970037453,
|
||||
"probability": 0.22883295194508005,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Plaid Cymru",
|
||||
"probability": 0.03230337078651685,
|
||||
"probability": 0.03157894736842105,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Liberal Democrats",
|
||||
"probability": 0.013389513108614231,
|
||||
"probability": 0.013089244851258579,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -987,193 +987,189 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Angela Rayner",
|
||||
"probability": 0.23187626092804303,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Lisa Nandy",
|
||||
"probability": 0.0996637525218561,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Sadiq Khan",
|
||||
"probability": 0.10342972427706794,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Rebecca Long-Bailey",
|
||||
"probability": 0.03739071956960323,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Anneliese Dodds",
|
||||
"probability": 0.06899798251513115,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Rosena Allin-Khan",
|
||||
"probability": 0.0672494956287828,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Andy Burnham",
|
||||
"probability": 0.14942837928715536,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Yvette Cooper",
|
||||
"probability": 0.05850706119704102,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Clive Lewis",
|
||||
"probability": 0.0707464694014795,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "John McDonnell",
|
||||
"probability": 0.03739071956960323,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Ian Lavery",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Dan Jarvis",
|
||||
"probability": 0.030531271015467387,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Emily Thornberry",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Nick Thomas-Symonds",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Sam Tarry",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Louise Haigh",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Richard Burgon",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Dawn Butler",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Dan Carden",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Jess Phillips",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "David Lammy",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Jon Trickett",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Barry Gardiner",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Seema Malhotra",
|
||||
"probability": 0.04478816408876934,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Jonathan Ashworth",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Ed Miliband",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Hilary Benn",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Stella Creasy",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Rachel Reeves",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Laura Pidcock",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Charlotte Nichols",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Kate Osborne",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Margaret Greenwood",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Zarah Sultana",
|
||||
"probability": 0,
|
||||
"probability": null,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Wes Streeting",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
"probability": null
|
||||
},
|
||||
{
|
||||
"name": "Jim McMahon",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
"probability": null
|
||||
},
|
||||
{
|
||||
"name": "Alison McGovern",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
"probability": null
|
||||
},
|
||||
{
|
||||
"name": "Bridget Phillipson",
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
"probability": null
|
||||
}
|
||||
],
|
||||
"description": "Keir Starmer was elected Labour Party leader on 4 April 2020. Who will be his successor?\r\n\r\nOther candidates available on request.",
|
||||
|
@ -1248,61 +1244,61 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Sadiq Khan",
|
||||
"probability": 0.9522559806197634,
|
||||
"probability": 0.9507205482213036,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shaun Bailey",
|
||||
"probability": 0.014434238417280703,
|
||||
"probability": 0.01682958782626221,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Siân Berry",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Brian Rose",
|
||||
"probability": 0.03149288381952153,
|
||||
"probability": 0.029628136652222095,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Mandu Reid",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Luisa Porritt",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Laurence Fox",
|
||||
"probability": 0.0010093873019077415,
|
||||
"probability": 0.002015519500151163,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "David Kurten",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Piers Corbyn",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Farah London",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Peter Gammons",
|
||||
"probability": 0.00010093873019077415,
|
||||
"probability": 0.00010077597500755815,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1412,22 +1408,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Conservative",
|
||||
"probability": 0.5163281049112882,
|
||||
"probability": 0.5024773620365625,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.3571612239650296,
|
||||
"probability": 0.37143345293012126,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Liberal Democrats",
|
||||
"probability": 0.08571183680466272,
|
||||
"probability": 0.08542627712284298,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Green",
|
||||
"probability": 0.040798834319019456,
|
||||
"probability": 0.04066290791047326,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1690,12 +1686,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.0832417307884481,
|
||||
"probability": 0.06568897036358082,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.9167582692115519,
|
||||
"probability": 0.9343110296364192,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1860,12 +1856,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.4813294624086495,
|
||||
"probability": 0.4825855665964067,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.5186705375913505,
|
||||
"probability": 0.5174144334035933,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -1965,32 +1961,32 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Joe Biden",
|
||||
"probability": 0.36833662388943733,
|
||||
"probability": 0.3579995202686496,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Kamala Harris",
|
||||
"probability": 0.3629072063178677,
|
||||
"probability": 0.3807867594147278,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Elizabeth Warren",
|
||||
"probability": 0.05145607107601184,
|
||||
"probability": 0.050011993283761096,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Alexandria Ocasio-Cortez",
|
||||
"probability": 0.0881046396841066,
|
||||
"probability": 0.08563204605420964,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Michelle Obama",
|
||||
"probability": 0.04565646594274432,
|
||||
"probability": 0.04437514991604702,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Pete Buttigieg",
|
||||
"probability": 0.06169792694965449,
|
||||
"probability": 0.05996641880546894,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -2010,7 +2006,7 @@
|
|||
},
|
||||
{
|
||||
"name": "Bernie Sanders",
|
||||
"probability": 0.020607107601184598,
|
||||
"probability": 0.020028783881026625,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -2050,7 +2046,7 @@
|
|||
},
|
||||
{
|
||||
"name": "Michael Bloomberg",
|
||||
"probability": 0.0012339585389930898,
|
||||
"probability": 0.0011993283761093788,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -2735,17 +2731,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "GERB",
|
||||
"probability": 0.6229853405685591,
|
||||
"probability": 0.7299990509632722,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "BSP",
|
||||
"probability": 0.34907264922653275,
|
||||
"probability": 0.2372591819303407,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "ITN",
|
||||
"probability": 0.027942010204908073,
|
||||
"probability": 0.032741767106387015,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -2821,12 +2817,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.9107025607353907,
|
||||
"probability": 0.9114912606917069,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.08929743926460933,
|
||||
"probability": 0.08850873930829305,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -2994,12 +2990,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.4613851519681116,
|
||||
"probability": 0.4731455307534847,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.5386148480318884,
|
||||
"probability": 0.5268544692465152,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3140,59 +3136,6 @@
|
|||
"description": "Will US Representative Marjorie Taylor Greene be expelled from the House of Representatives by the end of April 2021?",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "2021 Israeli election: Likud seats",
|
||||
"url": "https://smarkets.com/event/42067807/politics/world/israel/israeli-election-2021-likud-seats",
|
||||
"platform": "Smarkets",
|
||||
"options": [
|
||||
{
|
||||
"name": "26 or fewer",
|
||||
"probability": 0.04994645117320612,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "27–28",
|
||||
"probability": 0.12170187907701295,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "29–30",
|
||||
"probability": 0.3091227728556129,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "31–32",
|
||||
"probability": 0.32450589037094735,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "33 or more",
|
||||
"probability": 0.19472300652322072,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"description": "How many seats will Likud win in the March 2021 Israeli legislative election?",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "2021 Israeli election: Joint List seats",
|
||||
"url": "https://smarkets.com/event/42067810/politics/world/israel/israeli-election-2021-joint-list-seats",
|
||||
"platform": "Smarkets",
|
||||
"options": [
|
||||
{
|
||||
"name": "8 or fewer",
|
||||
"probability": 0.5199615619813052,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "9 or more",
|
||||
"probability": 0.4800384380186949,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
"description": "How many seats will the Joint List win in the 2021 Israeli legislative election?",
|
||||
"stars": 2
|
||||
},
|
||||
{
|
||||
"title": "Next G20 leader to leave",
|
||||
"url": "https://smarkets.com/event/42092242/politics/world/world-leaders/next-g20-leader-to-leave",
|
||||
|
@ -3302,12 +3245,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Less than 2.0%",
|
||||
"probability": 0.47011367803447013,
|
||||
"probability": 0.52042498626122,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2.0% or more",
|
||||
"probability": 0.5298863219655299,
|
||||
"probability": 0.47957501373878,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3359,12 +3302,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "SNP",
|
||||
"probability": 0.6490849447513812,
|
||||
"probability": 0.6122465597264066,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.35091505524861877,
|
||||
"probability": 0.3877534402735933,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3378,12 +3321,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "SNP",
|
||||
"probability": 0.5926263916773133,
|
||||
"probability": 0.5792525198465792,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Conservative",
|
||||
"probability": 0.40737360832268665,
|
||||
"probability": 0.4207474801534208,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3498,12 +3441,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "SNP",
|
||||
"probability": 0.4800384380186949,
|
||||
"probability": 0.4694173927900222,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Liberal Democrat",
|
||||
"probability": 0.5199615619813052,
|
||||
"probability": 0.5305826072099777,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3831,12 +3774,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.5093688822597184,
|
||||
"probability": 0.5337113493399486,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Plaid Cymru",
|
||||
"probability": 0.4906311177402815,
|
||||
"probability": 0.4662886506600514,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -3931,12 +3874,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.6243461299760618,
|
||||
"probability": 0.6395882953385505,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Plaid Cymru",
|
||||
"probability": 0.3756538700239383,
|
||||
"probability": 0.36041170466144945,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -4131,12 +4074,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": null,
|
||||
"probability": 0,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Conservative",
|
||||
"probability": null,
|
||||
"probability": 1,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -4414,17 +4357,17 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Siân Berry",
|
||||
"probability": 0.5179040119985002,
|
||||
"probability": 0.537460876369327,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Luisa Porritt",
|
||||
"probability": 0.32320959880015,
|
||||
"probability": 0.3372456964006259,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shaun Bailey",
|
||||
"probability": 0.026059242594675666,
|
||||
"probability": 0.027190923317683878,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -4444,12 +4387,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Brian Rose",
|
||||
"probability": 0.1115485564304462,
|
||||
"probability": 0.085093896713615,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Laurence Fox",
|
||||
"probability": 0.021278590176227973,
|
||||
"probability": 0.013008607198748044,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -4463,22 +4406,22 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "2021",
|
||||
"probability": 0.4308085220780966,
|
||||
"probability": 0.41130265535937716,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2022",
|
||||
"probability": 0.24175011761543114,
|
||||
"probability": 0.2500347560127902,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2023",
|
||||
"probability": 0.1268230391827408,
|
||||
"probability": 0.13116919227026275,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "2024 or later",
|
||||
"probability": 0.20061832112373146,
|
||||
"probability": 0.20749339635756986,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -4492,12 +4435,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "No overall control",
|
||||
"probability": 0.1719026362334709,
|
||||
"probability": 0.16450390908358184,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Labour",
|
||||
"probability": 0.7138044302198264,
|
||||
"probability": 0.7261223502861288,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
|
@ -4507,12 +4450,12 @@
|
|||
},
|
||||
{
|
||||
"name": "Green",
|
||||
"probability": 0.05811505095595048,
|
||||
"probability": 0.05561376642218103,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Northern Independence Party",
|
||||
"probability": 0.056177882590752126,
|
||||
"probability": 0.053759974208108324,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
@ -4618,12 +4561,12 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Yes",
|
||||
"probability": 0.6267722694827418,
|
||||
"probability": 0.6359214040442579,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "No",
|
||||
"probability": 0.37322773051725827,
|
||||
"probability": 0.3640785959557421,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
|
|
@ -914,87 +914,87 @@
|
|||
"options": [
|
||||
{
|
||||
"name": "Sadiq Khan",
|
||||
"probability": 0.8776707112411921,
|
||||
"probability": 0.8746575753901864,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Shaun Bailey",
|
||||
"probability": 0.05369279645240234,
|
||||
"probability": 0.05300955002364766,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Brian Rose",
|
||||
"probability": 0.02684639822620117,
|
||||
"probability": 0.031074563806965872,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Sian Berry",
|
||||
"probability": 0.009037401383077622,
|
||||
"probability": 0.008922399508930794,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Laurence Fox",
|
||||
"probability": 0.004541181789506666,
|
||||
"probability": 0.004483394778119454,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Luisa Porritt",
|
||||
"probability": 0.004541181789506666,
|
||||
"probability": 0.004483394778119454,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "David Kurten",
|
||||
"probability": 0.003636563903150756,
|
||||
"probability": 0.003590288248613587,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Peter Gammons",
|
||||
"probability": 0.003636563903150756,
|
||||
"probability": 0.003590288248613587,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Kam Balayev",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Count Binface",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Piers Corbyn",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Farah London",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Nims Obunge",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Max Fosh",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Mandu Reid",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Drillminister",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
},
|
||||
{
|
||||
"name": "Valerie Brown",
|
||||
"probability": 0.0018219112568679434,
|
||||
"probability": 0.0017987272463113977,
|
||||
"type": "PROBABILITY"
|
||||
}
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue
Block a user