time-to-botec/squiggle/node_modules/@stdlib/stats/base/dmeanvarpn/src/dmeanvarpn.c
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

107 lines
3.1 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/dmeanvarpn.h"
#include "stdlib/blas/ext/base/dsumpw.h"
#include <stdint.h>
/**
* Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param strideX X stride length
* @param Out output array
* @param strideOut Out stride length
*/
void stdlib_strided_dmeanvarpn( const int64_t N, const double correction, const double *X, const int64_t strideX, double *Out, const int64_t strideOut ) {
int64_t ix;
int64_t io;
int64_t i;
double M2;
double mu;
double dN;
double M;
double d;
double c;
double n;
if ( strideX < 0 ) {
ix = (1-N) * strideX;
} else {
ix = 0;
}
if ( strideOut < 0 ) {
io = -strideOut;
} else {
io = 0;
}
if ( N <= 0 ) {
Out[ io ] = 0.0 / 0.0; // NaN
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
return;
}
dN = (double)N;
n = dN - correction;
if ( N == 1 || strideX == 0 ) {
Out[ io ] = X[ ix ];
if ( n <= 0.0 ) {
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
} else {
Out[ io+strideOut ] = 0.0;
}
return;
}
// Compute an estimate for the mean:
mu = stdlib_strided_dsumpw( N, X, strideX ) / dN;
if ( mu != mu ) {
Out[ io ] = 0.0 / 0.0; // NaN
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
return;
}
// Compute the sum of squared differences from the mean...
M2 = 0.0;
M = 0.0;
for ( i = 0; i < N; i++ ) {
d = X[ ix ] - mu;
M2 += d * d;
M += d;
ix += strideX;
}
// Compute an error term for the mean:
c = M / dN;
Out[ io ] = mu + c;
if ( n <= 0.0 ) {
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
} else {
Out[ io+strideOut ] = (M2/n) - (c*(M/n));
}
return;
}