107 lines
3.1 KiB
C
107 lines
3.1 KiB
C
/**
|
||
* @license Apache-2.0
|
||
*
|
||
* Copyright (c) 2020 The Stdlib Authors.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
#include "stdlib/stats/base/dmeanvarpn.h"
|
||
#include "stdlib/blas/ext/base/dsumpw.h"
|
||
#include <stdint.h>
|
||
|
||
/**
|
||
* Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
|
||
*
|
||
* ## Method
|
||
*
|
||
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
|
||
*
|
||
* ## References
|
||
*
|
||
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
|
||
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
|
||
*
|
||
* @param N number of indexed elements
|
||
* @param correction degrees of freedom adjustment
|
||
* @param X input array
|
||
* @param strideX X stride length
|
||
* @param Out output array
|
||
* @param strideOut Out stride length
|
||
*/
|
||
void stdlib_strided_dmeanvarpn( const int64_t N, const double correction, const double *X, const int64_t strideX, double *Out, const int64_t strideOut ) {
|
||
int64_t ix;
|
||
int64_t io;
|
||
int64_t i;
|
||
double M2;
|
||
double mu;
|
||
double dN;
|
||
double M;
|
||
double d;
|
||
double c;
|
||
double n;
|
||
|
||
if ( strideX < 0 ) {
|
||
ix = (1-N) * strideX;
|
||
} else {
|
||
ix = 0;
|
||
}
|
||
if ( strideOut < 0 ) {
|
||
io = -strideOut;
|
||
} else {
|
||
io = 0;
|
||
}
|
||
if ( N <= 0 ) {
|
||
Out[ io ] = 0.0 / 0.0; // NaN
|
||
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
|
||
return;
|
||
}
|
||
dN = (double)N;
|
||
n = dN - correction;
|
||
if ( N == 1 || strideX == 0 ) {
|
||
Out[ io ] = X[ ix ];
|
||
if ( n <= 0.0 ) {
|
||
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
|
||
} else {
|
||
Out[ io+strideOut ] = 0.0;
|
||
}
|
||
return;
|
||
}
|
||
// Compute an estimate for the mean:
|
||
mu = stdlib_strided_dsumpw( N, X, strideX ) / dN;
|
||
if ( mu != mu ) {
|
||
Out[ io ] = 0.0 / 0.0; // NaN
|
||
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
|
||
return;
|
||
}
|
||
// Compute the sum of squared differences from the mean...
|
||
M2 = 0.0;
|
||
M = 0.0;
|
||
for ( i = 0; i < N; i++ ) {
|
||
d = X[ ix ] - mu;
|
||
M2 += d * d;
|
||
M += d;
|
||
ix += strideX;
|
||
}
|
||
// Compute an error term for the mean:
|
||
c = M / dN;
|
||
|
||
Out[ io ] = mu + c;
|
||
if ( n <= 0.0 ) {
|
||
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
|
||
} else {
|
||
Out[ io+strideOut ] = (M2/n) - (c*(M/n));
|
||
}
|
||
return;
|
||
}
|