time-to-botec/squiggle/node_modules/@stdlib/stats/base/dmeanvarpn/src/dmeanvarpn.c

107 lines
3.1 KiB
C
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/dmeanvarpn.h"
#include "stdlib/blas/ext/base/dsumpw.h"
#include <stdint.h>
/**
* Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param strideX X stride length
* @param Out output array
* @param strideOut Out stride length
*/
void stdlib_strided_dmeanvarpn( const int64_t N, const double correction, const double *X, const int64_t strideX, double *Out, const int64_t strideOut ) {
int64_t ix;
int64_t io;
int64_t i;
double M2;
double mu;
double dN;
double M;
double d;
double c;
double n;
if ( strideX < 0 ) {
ix = (1-N) * strideX;
} else {
ix = 0;
}
if ( strideOut < 0 ) {
io = -strideOut;
} else {
io = 0;
}
if ( N <= 0 ) {
Out[ io ] = 0.0 / 0.0; // NaN
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
return;
}
dN = (double)N;
n = dN - correction;
if ( N == 1 || strideX == 0 ) {
Out[ io ] = X[ ix ];
if ( n <= 0.0 ) {
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
} else {
Out[ io+strideOut ] = 0.0;
}
return;
}
// Compute an estimate for the mean:
mu = stdlib_strided_dsumpw( N, X, strideX ) / dN;
if ( mu != mu ) {
Out[ io ] = 0.0 / 0.0; // NaN
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
return;
}
// Compute the sum of squared differences from the mean...
M2 = 0.0;
M = 0.0;
for ( i = 0; i < N; i++ ) {
d = X[ ix ] - mu;
M2 += d * d;
M += d;
ix += strideX;
}
// Compute an error term for the mean:
c = M / dN;
Out[ io ] = mu + c;
if ( n <= 0.0 ) {
Out[ io+strideOut ] = 0.0 / 0.0; // NaN
} else {
Out[ io+strideOut ] = (M2/n) - (c*(M/n));
}
return;
}