4.6 KiB
4.6 KiB
incrmmpe
Compute a moving mean percentage error (MPE) incrementally.
For a window of size W
, the mean percentage error is defined as
where f_i
is the forecast value and a_i
is the actual value.
Usage
var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
incrmmpe( window )
Returns an accumulator function
which incrementally computes a moving mean percentage error. The window
parameter defines the number of values over which to compute the moving mean percentage error.
var accumulator = incrmmpe( 3 );
accumulator( [f, a] )
If provided input values f
and a
, the accumulator function returns an updated mean percentage error. If not provided input values f
and a
, the accumulator function returns the current mean percentage error.
var accumulator = incrmmpe( 3 );
var m = accumulator();
// returns null
// Fill the window...
m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)]
// returns ~33.33
m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)]
// returns ~54.17
m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)]
// returns ~58.33
// Window begins sliding...
m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)]
// returns ~2.78
m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)]
// returns ~-44.44
m = accumulator();
// returns ~-44.44
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for at leastW-1
future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function. - As
W
(f,a) pairs are needed to fill the window buffer, the firstW-1
returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. - Be careful when interpreting the mean percentage error as errors can cancel. This stated, that errors can cancel makes the mean percentage error suitable for measuring the bias in forecasts.
- Warning: the mean percentage error is not suitable for intermittent demand patterns (i.e., when
a_i
is0
). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold).
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrmmpe( 5 );
// For each simulated datum, update the moving mean percentage error...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) + 50.0;
v2 = ( randu()*100.0 ) + 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );