4.1 KiB
4.1 KiB
incrmda
Compute the mean directional accuracy (MDA) incrementally.
The mean directional accuracy is defined as
where f_i
is the forecast value, a_i
is the actual value, sgn(x)
is the signum function, and δ
is the Kronecker delta.
Usage
var incrmda = require( '@stdlib/stats/incr/mda' );
incrmda()
Returns an accumulator function
which incrementally computes the mean directional accuracy.
var accumulator = incrmda();
accumulator( [f, a] )
If provided input values f
and a
, the accumulator function returns an updated mean directional accuracy. If not provided input values f
and a
, the accumulator function returns the current mean directional accuracy.
var accumulator = incrmda();
var m = accumulator( 2.0, 3.0 );
// returns 1.0
m = accumulator( -1.0, 4.0 );
// returns 0.5
m = accumulator( -3.0, -2.0 );
// returns ~0.67
m = accumulator();
// returns ~0.67
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrmda = require( '@stdlib/stats/incr/mda' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrmda();
// For each simulated datum, update the mean directional accuracy...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) - 50.0;
v2 = ( randu()*100.0 ) - 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );