4.9 KiB
4.9 KiB
hypot
Compute the hypotenuse avoiding overflow and underflow.
Usage
var hypot = require( '@stdlib/math/base/special/hypot' );
hypot( x, y )
Computes the hypotenuse avoiding overflow and underflow.
var h = hypot( -5.0, 12.0 );
// returns 13.0
h = hypot( -0.0, -0.0 );
// returns +0.0
If either argument is NaN
, the function returns NaN
.
var h = hypot( NaN, 12.0 );
// returns NaN
h = hypot( 5.0, NaN );
// returns NaN
Notes
-
The textbook approach to calculating the hypotenuse is subject to overflow and underflow. For example, for a sufficiently large
x
and/ory
, computing the hypotenuse will overflow.var sqrt = require( '@stdlib/math/base/special/sqrt' ); var x2 = 1.0e154 * 1.0e154; // returns 1.0e308 var h = sqrt( x2 + x2 ); // returns Infinity
Similarly, for sufficiently small
x
and/ory
, computing the hypotenuse will underflow.var sqrt = require( '@stdlib/math/base/special/sqrt' ); var x2 = 1.0e-200 * 1.0e-200; // returns 0.0 var h = sqrt( x2 + x2 ); // returns 0.0
This implementation uses a numerically stable algorithm which avoids overflow and underflow.
var h = hypot( 1.0e154, 1.0e154 ); // returns ~1.4142e+154 h = hypot( 1.0e-200, 1.0e-200 ); // returns ~1.4142e-200
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var hypot = require( '@stdlib/math/base/special/hypot' );
var x;
var y;
var h;
var i;
for ( i = 0; i < 100; i++ ) {
x = round( randu()*100.0 ) - 50.0;
y = round( randu()*100.0 ) - 50.0;
h = hypot( x, y );
console.log( 'h(%d,%d) = %d', x, y, h );
}
C APIs
Usage
#include "stdlib/math/base/special/hypot.h
stdlib_base_hypot( x, y )
Computes the hypotenuse avoiding overflow and underflow.
double h = stdlib_base_hypot( 5.0, 12.0 );
// returns 13.0
The function accepts the following arguments:
- x:
[in] double
input value. - y:
[in] double
input value.
double stdlib_base_hypot( const double x, const double y );
Examples
#include "stdlib/math/base/special/hypot.h"
#include <stdio.h>
int main() {
double x[] = { 3.0, 4.0, 5.0, 12.0 };
double y;
int i;
for ( i = 0; i < 4; i += 2 ) {
y = stdlib_base_hypot( x[ i ], x[ i+1 ] );
printf( "hypot(%lf, %lf) = %lf\n", x[ i ], x[ i+1 ], y );
}
}