5.8 KiB
dcusumkbn
Calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
Usage
var dcusumkbn = require( '@stdlib/blas/ext/base/dcusumkbn' );
dcusumkbn( N, sum, x, strideX, y, strideY )
Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcusumkbn( x.length, 0.0, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]
x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
y = new Float64Array( x.length );
dcusumkbn( x.length, 10.0, x, 1, y, 1 );
// y => <Float64Array>[ 11.0, 9.0, 11.0 ]
The function has the following parameters:
- N: number of indexed elements.
- sum: initial sum.
- x: input
Float64Array
. - strideX: index increment for
x
. - y: output
Float64Array
. - strideY: index increment for
y
.
The N
and stride
parameters determine which elements in x
and y
are accessed at runtime. For example, to compute the cumulative sum of every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );
var N = floor( x.length / 2 );
var v = dcusumkbn( N, 0.0, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var N = floor( x0.length / 2 );
dcusumkbn( N, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]
dcusumkbn.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )
Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );
dcusumkbn.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, offsetX
and offsetY
parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x
starting from the second value and to store in the last N
elements of y
starting from the last element
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );
var N = floor( x.length / 2 );
dcusumkbn.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]
Notes
- If
N <= 0
, both functions returny
unchanged.
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dcusumkbn = require( '@stdlib/blas/ext/base/dcusumkbn' );
var y;
var x;
var i;
x = new Float64Array( 10 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( randu()*100.0 );
}
console.log( x );
console.log( y );
dcusumkbn( x.length, 0.0, x, 1, y, -1 );
console.log( y );
References
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.