time-to-botec/squiggle/node_modules/@stdlib/math/base/special/cexp/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

3.1 KiB

exp

Compute the exponential function of a complex number.

The exponential function of a complex number is defined as

Complex exponential function

Usage

var cexp = require( '@stdlib/math/base/special/cexp' );

cexp( [out,] re, im )

Evaluates the exponential function with a complex argument comprised of a real component re and an imaginary component im.

var v = cexp( 0.0, 0.0 );
// returns [ 1.0, 0.0 ]

v = cexp( 0.0, 1.0 );
// returns [ ~0.540, ~0.841 ]

By default, the function returns real and imaginary components as a two-element array. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.

var Float64Array = require( '@stdlib/array/float64' );

var out = new Float64Array( 2 );

var v = cexp( out, 0.0, 1.0 );
// returns <Float64Array>[ ~0.540, ~0.841 ]

var bool = ( v === out );
// returns true

Examples

var Complex128 = require( '@stdlib/complex/float64' );
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );
var cexp = require( '@stdlib/math/base/special/cexp' );

var re;
var im;
var z1;
var z2;
var o;
var i;

for ( i = 0; i < 100; i++ ) {
    re = round( randu()*100.0 ) - 50.0;
    im = round( randu()*100.0 ) - 50.0;
    z1 = new Complex128( re, im );

    o = cexp( real(z1), imag(z1) );
    z2 = new Complex128( o[ 0 ], o[ 1 ] );

    console.log( 'cexp(%s) = %s', z1.toString(), z2.toString() );
}