time-to-botec/squiggle/node_modules/@stdlib/stats/incr/meanvar/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

5.1 KiB

incrmeanvar

Compute an arithmetic mean and an unbiased sample variance incrementally.

The arithmetic mean is defined as

Equation for the arithmetic mean.

and the unbiased sample variance is defined as

Equation for the unbiased sample variance.

Usage

var incrmeanvar = require( '@stdlib/stats/incr/meanvar' );

incrmeanvar( [out] )

Returns an accumulator function which incrementally computes an arithmetic mean and unbiased sample variance.

var accumulator = incrmeanvar();

By default, the returned accumulator function returns the accumulated values as a two-element array. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.

var Float64Array = require( '@stdlib/array/float64' );

var accumulator = incrmeanvar( new Float64Array( 2 ) );

accumulator( [x] )

If provided an input value x, the accumulator function returns updated accumulated values. If not provided an input value x, the accumulator function returns the current accumulated values.

var accumulator = incrmeanvar();

var mv = accumulator();
// returns null

mv = accumulator( 2.0 );
// returns [ 2.0, 0.0 ]

mv = accumulator( 1.0 );
// returns [ 1.5, 0.5 ]

mv = accumulator( 3.0 );
// returns [ 2.0, 1.0 ]

mv = accumulator( -7.0 );
// returns [ -0.25, ~20.92 ]

mv = accumulator( -5.0 );
// returns [ -1.2, 20.2 ]

mv = accumulator();
// returns [ -1.2, 20.2 ]

Notes

  • Input values are not type checked. If provided NaN, the accumulated values are equal to NaN for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.

Examples

var randu = require( '@stdlib/random/base/randu' );
var Float64Array = require( '@stdlib/array/float64' );
var ArrayBuffer = require( '@stdlib/array/buffer' );
var incrmeanvar = require( '@stdlib/stats/incr/meanvar' );

var offset;
var acc;
var buf;
var out;
var mv;
var N;
var v;
var i;
var j;

// Define the number of accumulators:
N = 5;

// Create an array buffer for storing accumulator output:
buf = new ArrayBuffer( N*2*8 ); // 8 bytes per element

// Initialize accumulators:
acc = [];
for ( i = 0; i < N; i++ ) {
    // Compute the byte offset:
    offset = i * 2 * 8; // stride=2, bytes_per_element=8

    // Create a new view for storing accumulated values:
    out = new Float64Array( buf, offset, 2 );

    // Initialize an accumulator which will write results to the view:
    acc.push( incrmeanvar( out ) );
}

// Simulate data and update the sample means and variances...
for ( i = 0; i < 100; i++ ) {
    for ( j = 0; j < N; j++ ) {
        v = randu() * 100.0 * (j+1);
        acc[ j ]( v );
    }
}

// Print the final results:
console.log( 'Mean\tVariance' );
for ( i = 0; i < N; i++ ) {
    mv = acc[ i ]();
    console.log( '%d\t%d', mv[ 0 ].toFixed( 3 ), mv[ 1 ].toFixed( 3 ) );
}