time-to-botec/js/node_modules/@stdlib/stats/base/dsnanmeanwd/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

6.2 KiB
Raw Blame History

dsnanmeanwd

Calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using Welford's algorithm with extended accumulation, and returning an extended precision result.

The arithmetic mean is defined as

Equation for the arithmetic mean.

Usage

var dsnanmeanwd = require( '@stdlib/stats/base/dsnanmeanwd' );

dsnanmeanwd( N, x, stride )

Computes the arithmetic mean of a single-precision floating-point strided array x, ignoring NaN values, using Welford's algorithm with extended accumulation, and returning an extended precision result.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dsnanmeanwd( N, x, 1 );
// returns ~0.3333

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float32Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the arithmetic mean of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );

var v = dsnanmeanwd( N, x, 2 );
// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dsnanmeanwd( N, x1, 2 );
// returns 1.25

dsnanmeanwd.ndarray( N, x, stride, offset )

Computes the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using Welford's algorithm with extended accumulation and alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dsnanmeanwd.ndarray( N, x, 1, 0 );
// returns ~0.33333

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x starting from the second value

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );

var v = dsnanmeanwd.ndarray( N, x, 2, 1 );
// returns 1.25

Notes

  • If N <= 0, both functions return NaN.
  • If every indexed element is NaN, both functions return NaN.
  • Accumulated intermediate values are stored as double-precision floating-point numbers.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var dsnanmeanwd = require( '@stdlib/stats/base/dsnanmeanwd' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( (randu()*100.0) - 50.0 );
    }
}
console.log( x );

var v = dsnanmeanwd( x.length, x, 1 );
console.log( v );

References

  • Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 41920. doi:10.1080/00401706.1962.10490022.
  • van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 14950. doi:10.1145/362929.362961.