time-to-botec/wip/nim/samples.nim

80 lines
1.7 KiB
Nim

import std/math
import std/random
# randomize()
## Basic math functions
proc factorial(n: int): int =
if n == 0 or n < 0:
return 1
else:
return n * factorial(n - 1)
proc sine(x: float): float =
let n = 8
# ^ Taylor will converge really quickly
# notice that the factorial of 17 is
# already pretty gigantic
var acc = 0.0
for i in 0..n:
var k = 2*i + 1
var taylor = pow(-1, i.float) * pow(x, k.float) / factorial(k).float
acc = acc + taylor
return acc
## Log function
## Old implementation using Taylor expansion
proc log_slow(x: float): float =
var y = x - 1
let n = 100000000
var acc = 0.0
for i in 1..n:
let taylor = pow(-1.0, float(i+1)) * pow(y, i.float) / i.float
acc = acc + taylor
return acc
## New implementation
## <https://en.wikipedia.org/wiki/Natural_logarithm#High_precision>
## Arithmetic-geomtric mean
proc ag(x: float, y: float): float =
let n = 128 # just some high number
var a = (x + y)/2.0
var b = sqrt(x * y)
for i in 0..n:
let temp = a
a = (a+b)/2.0
b = sqrt(b*temp)
return a
## Find m such that x * 2^m > 2^precision/2
proc find_m(x:float): float =
var m = 0.0;
let precision = 64 # bits
let c = pow(2.0, precision.float / 2.0)
while x * pow(2.0, m) < c:
m = m + 1
return m
proc log(x: float): float =
let m = find_m(x)
let s = x * pow(2.0, m)
let ln2 = 0.6931471805599453
return ( PI / (2.0 * ag(1, 4.0/s)) ) - m * ln2
## Test these functions
echo factorial(5)
echo sine(1.0)
echo log(1.0)
echo log(2.0)
echo log(3.0)
echo pow(2.0, 32.float)
## Distribution functions
proc normal(): float =
let u1 = rand(1.0)
let u2 = rand(1.0)
let z = 1
# see https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Basic_form