add cool implementation of the logarithm

This commit is contained in:
NunoSempere 2023-05-20 22:38:38 -04:00
parent 7e2d2b95a1
commit 6e22e78d4f
2 changed files with 31 additions and 16 deletions

Binary file not shown.

View File

@ -22,23 +22,10 @@ proc sine(x: float): float =
acc = acc + taylor
return acc
# Helpers for calculating the log function
## Arithmetic-geomtric mean
proc ag(x: float, y: float): float =
let n = 100
var a = (x + y)/2.0
var b = sqrt(x * y)
for i in 0..n:
let temp = a
a = (a+b)/2.0
b = sqrt(b*temp)
return a
## Find m such that x * 2^m > 2^100
## Log function
## Old implementation using Taylor expansion
proc log_slow(x: float): float =
# See: <https://en.wikipedia.org/wiki/Natural_logarithm#High_precision>
var y = x - 1
let n = 100000000
var acc = 0.0
@ -47,14 +34,42 @@ proc log_slow(x: float): float =
acc = acc + taylor
return acc
## New implementation
## <https://en.wikipedia.org/wiki/Natural_logarithm#High_precision>
## Arithmetic-geomtric mean
proc ag(x: float, y: float): float =
let n = 128 # just some high number
var a = (x + y)/2.0
var b = sqrt(x * y)
for i in 0..n:
let temp = a
a = (a+b)/2.0
b = sqrt(b*temp)
return a
## Find m such that x * 2^m > 2^precision/2
proc find_m(x:float): float =
var m = 0.0;
let precision = 64 # bits
let c = pow(2.0, precision.float / 2.0)
while x * pow(2.0, m) < c:
m = m + 1
return m
proc log(x: float): float =
return 1
let m = find_m(x)
let s = x * pow(2.0, m)
let ln2 = 0.6931471805599453
return ( PI / (2.0 * ag(1, 4.0/s)) ) - m * ln2
## Test these functions
echo factorial(5)
echo sine(1.0)
echo log(1.0)
echo log(2.0)
echo log(3.0)
echo pow(2.0, 32.float)
## Distribution functions
proc normal(): float =