time-to-botec/squiggle/node_modules/@stdlib/blas/ext/base/snansumpw
..
docs
include/stdlib/blas/ext/base
lib
src
binding.gyp
include.gypi
manifest.json
package.json
README.md

snansumpw

Calculate the sum of single-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.

Usage

var snansumpw = require( '@stdlib/blas/ext/base/snansumpw' );

snansumpw( N, x, stride )

Computes the sum of single-precision floating-point strided array elements, ignoring NaN values and using pairwise summation.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snansumpw( N, x, 1 );
// returns 1.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float32Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the sum of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = snansumpw( N, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = snansumpw( N, x1, 2 );
// returns 5.0

snansumpw.ndarray( N, x, stride, offset )

Computes the sum of single-precision floating-point strided array elements, ignoring NaN values and using pairwise summation and alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snansumpw.ndarray( N, x, 1, 0 );
// returns 1.0

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x starting from the second value

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = snansumpw.ndarray( N, x, 2, 1 );
// returns 5.0

Notes

  • If N <= 0, both functions return 0.0.
  • In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the KahanBabuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var snansumpw = require( '@stdlib/blas/ext/base/snansumpw' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( randu()*100.0 );
    }
}
console.log( x );

var v = snansumpw( x.length, x, 1 );
console.log( v );

References

  • Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 78399. doi:10.1137/0914050.