|  | ||
|---|---|---|
| .. | ||
| dapx | ||
| dapxsum | ||
| dapxsumkbn | ||
| dapxsumkbn2 | ||
| dapxsumors | ||
| dapxsumpw | ||
| dasumpw | ||
| dcusum | ||
| dcusumkbn | ||
| dcusumkbn2 | ||
| dcusumors | ||
| dcusumpw | ||
| dfill | ||
| dnanasum | ||
| dnanasumors | ||
| dnannsum | ||
| dnannsumkbn | ||
| dnannsumkbn2 | ||
| dnannsumors | ||
| dnannsumpw | ||
| dnansum | ||
| dnansumkbn | ||
| dnansumkbn2 | ||
| dnansumors | ||
| dnansumpw | ||
| docs/types | ||
| drev | ||
| dsapxsum | ||
| dsapxsumpw | ||
| dsnannsumors | ||
| dsnansum | ||
| dsnansumors | ||
| dsnansumpw | ||
| dsort2hp | ||
| dsort2ins | ||
| dsort2sh | ||
| dsorthp | ||
| dsortins | ||
| dsortsh | ||
| dssum | ||
| dssumors | ||
| dssumpw | ||
| dsum | ||
| dsumkbn | ||
| dsumkbn2 | ||
| dsumors | ||
| dsumpw | ||
| gapx | ||
| gapxsum | ||
| gapxsumkbn | ||
| gapxsumkbn2 | ||
| gapxsumors | ||
| gapxsumpw | ||
| gasumpw | ||
| gcusum | ||
| gcusumkbn | ||
| gcusumkbn2 | ||
| gcusumors | ||
| gcusumpw | ||
| gfill | ||
| gfill-by | ||
| gnannsumkbn | ||
| gnansum | ||
| gnansumkbn | ||
| gnansumkbn2 | ||
| gnansumors | ||
| gnansumpw | ||
| grev | ||
| gsort2hp | ||
| gsort2ins | ||
| gsort2sh | ||
| gsorthp | ||
| gsortins | ||
| gsortsh | ||
| gsum | ||
| gsumkbn | ||
| gsumkbn2 | ||
| gsumors | ||
| gsumpw | ||
| lib | ||
| sapx | ||
| sapxsum | ||
| sapxsumkbn | ||
| sapxsumkbn2 | ||
| sapxsumors | ||
| sapxsumpw | ||
| sasumpw | ||
| scusum | ||
| scusumkbn | ||
| scusumkbn2 | ||
| scusumors | ||
| scusumpw | ||
| sdsapxsum | ||
| sdsapxsumpw | ||
| sdsnansum | ||
| sdsnansumpw | ||
| sdssum | ||
| sdssumpw | ||
| sfill | ||
| snansum | ||
| snansumkbn | ||
| snansumkbn2 | ||
| snansumors | ||
| snansumpw | ||
| srev | ||
| ssort2hp | ||
| ssort2ins | ||
| ssort2sh | ||
| ssorthp | ||
| ssortins | ||
| ssortsh | ||
| ssum | ||
| ssumkbn | ||
| ssumkbn2 | ||
| ssumors | ||
| ssumpw | ||
| package.json | ||
| README.md | ||
Extended BLAS
Standard library extensions to base basic linear algebra subprograms (BLAS).
Usage
var extblas = require( '@stdlib/blas/ext/base' );
extblas
Standard library extensions to base basic linear algebra subprograms (BLAS).
var ns = extblas;
// returns {...}
- dapx( N, alpha, x, stride ): add a constant to each element in a double-precision floating-point strided array.
- dapxsum( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum.
- dapxsumkbn( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.
- dapxsumkbn2( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
- dapxsumors( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using ordinary recursive summation.
- dapxsumpw( N, alpha, x, stride ): add a constant to each double-precision floating-point strided array element and compute the sum using pairwise summation.
- dasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.
- dcusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements.
- dcusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
- dcusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
- dcusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using ordinary recursive summation.
- dcusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of double-precision floating-point strided array elements using pairwise summation.
- dfill( N, alpha, x, stride ): fill a double-precision floating-point strided array with a specified scalar constant.
- dnanasum( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring- NaNvalues.
- dnanasumors( N, x, stride ): calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring- NaNvalues and using ordinary recursive summation.
- dnannsum( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues.
- dnannsumkbn( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using an improved Kahan–Babuška algorithm.
- dnannsumkbn2( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using a second-order iterative Kahan–Babuška algorithm.
- dnannsumors( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using ordinary recursive summation.
- dnannsumpw( N, x, strideX, out, strideOut ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using pairwise summation.
- dnansum( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues.
- dnansumkbn( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using an improved Kahan–Babuška algorithm.
- dnansumkbn2( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using a second-order iterative Kahan–Babuška algorithm.
- dnansumors( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using ordinary recursive summation.
- dnansumpw( N, x, stride ): calculate the sum of double-precision floating-point strided array elements, ignoring- NaNvalues and using pairwise summation.
- drev( N, x, stride ): reverse a double-precision floating-point strided array in-place.
- dsapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation and returning an extended precision result.
- dsapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation and returning an extended precision result.
- dsnannsumors( N, x, strideX, out, strideOut ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
- dsnansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues, using extended accumulation, and returning an extended precision result.
- dsnansumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
- dsnansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues, using pairwise summation with extended accumulation, and returning an extended precision result.
- dsort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using heapsort.
- dsort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using insertion sort.
- dsort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort.
- dsorthp( N, order, x, stride ): sort a double-precision floating-point strided array using heapsort.
- dsortins( N, order, x, stride ): sort a double-precision floating-point strided array using insertion sort.
- dsortsh( N, order, x, stride ): sort a double-precision floating-point strided array using Shellsort.
- dssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using extended accumulation and returning an extended precision result.
- dssumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result.
- dssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation and returning an extended precision result.
- dsum( N, x, stride ): calculate the sum of double-precision floating-point strided array elements.
- dsumkbn( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
- dsumkbn2( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
- dsumors( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.
- dsumpw( N, x, stride ): calculate the sum of double-precision floating-point strided array elements using pairwise summation.
- gapx( N, alpha, x, stride ): add a constant to each element in a strided array.
- gapxsum( N, alpha, x, stride ): add a constant to each strided array element and compute the sum.
- gapxsumkbn( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.
- gapxsumkbn2( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
- gapxsumors( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using ordinary recursive summation.
- gapxsumpw( N, alpha, x, stride ): add a constant to each strided array element and compute the sum using pairwise summation.
- gasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of strided array elements using pairwise summation.
- gcusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements.
- gcusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.
- gcusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.
- gcusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using ordinary recursive summation.
- gcusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of strided array elements using pairwise summation.
- gfillBy( N, x, stride, clbk[, thisArg] ): fill a strided array according to a provided callback function.
- gfill( N, alpha, x, stride ): fill a strided array with a specified scalar constant.
- gnannsumkbn( N, x, strideX, out, strideOut ): calculate the sum of strided array elements, ignoring- NaNvalues and using an improved Kahan–Babuška algorithm.
- gnansum( N, x, stride ): calculate the sum of strided array elements, ignoring- NaNvalues.
- gnansumkbn( N, x, stride ): calculate the sum of strided array elements, ignoring- NaNvalues and using an improved Kahan–Babuška algorithm.
- gnansumkbn2( N, x, stride ): calculate the sum of strided array elements, ignoring- NaNvalues and using a second-order iterative Kahan–Babuška algorithm.
- gnansumors( N, x, stride ): calculate the sum of strided array elements, ignoring- NaNvalues and using ordinary recursive summation.
- gnansumpw( N, x, stride ): calculate the sum of strided array elements, ignoring- NaNvalues and using pairwise summation.
- grev( N, x, stride ): reverse a strided array in-place.
- gsort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using heapsort.
- gsort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.
- gsort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two strided arrays based on the sort order of the first array using Shellsort.
- gsorthp( N, order, x, stride ): sort a strided array using heapsort.
- gsortins( N, order, x, stride ): sort a strided array using insertion sort.
- gsortsh( N, order, x, stride ): sort a strided array using Shellsort.
- gsum( N, x, stride ): calculate the sum of strided array elements.
- gsumkbn( N, x, stride ): calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.
- gsumkbn2( N, x, stride ): calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.
- gsumors( N, x, stride ): calculate the sum of strided array elements using ordinary recursive summation.
- gsumpw( N, x, stride ): calculate the sum of strided array elements using pairwise summation.
- sapx( N, alpha, x, stride ): add a constant to each element in a single-precision floating-point strided array.
- sapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum.
- sapxsumkbn( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.
- sapxsumkbn2( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
- sapxsumors( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.
- sapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.
- sasumpw( N, x, stride ): calculate the sum of absolute values (L1 norm) of single-precision floating-point strided array elements using pairwise summation.
- scusum( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements.
- scusumkbn( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
- scusumkbn2( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
- scusumors( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using ordinary recursive summation.
- scusumpw( N, sum, x, strideX, y, strideY ): calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.
- sdsapxsum( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using extended accumulation.
- sdsapxsumpw( N, alpha, x, stride ): add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation with extended accumulation.
- sdsnansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using extended accumulation.
- sdsnansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using pairwise summation with extended accumulation.
- sdssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using extended accumulation.
- sdssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation with extended accumulation.
- sfill( N, alpha, x, stride ): fill a single-precision floating-point strided array with a specified scalar constant.
- snansum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues.
- snansumkbn( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using an improved Kahan–Babuška algorithm.
- snansumkbn2( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using a second-order iterative Kahan–Babuška algorithm.
- snansumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using ordinary recursive summation.
- snansumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements, ignoring- NaNvalues and using pairwise summation.
- srev( N, x, stride ): reverse a single-precision floating-point strided array in-place.
- ssort2hp( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.
- ssort2ins( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using insertion sort.
- ssort2sh( N, order, x, strideX, y, strideY ): simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using Shellsort.
- ssorthp( N, order, x, stride ): sort a single-precision floating-point strided array using heapsort.
- ssortins( N, order, x, stride ): sort a single-precision floating-point strided array using insertion sort.
- ssortsh( N, order, x, stride ): sort a single-precision floating-point strided array using Shellsort.
- ssum( N, x, stride ): calculate the sum of single-precision floating-point strided array elements.
- ssumkbn( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
- ssumkbn2( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
- ssumors( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation.
- ssumpw( N, x, stride ): calculate the sum of single-precision floating-point strided array elements using pairwise summation.
Examples
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/blas/ext/base' );
console.log( objectKeys( ns ) );