time-to-botec/squiggle/node_modules/@stdlib/blas/base/cswap/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

6.9 KiB

cswap

Interchange two complex single-precision floating-point vectors.

Usage

var cswap = require( '@stdlib/blas/base/cswap' );

cswap( N, x, strideX, y, strideY )

Interchanges two complex single-precision floating-point vectors.

var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap( x.length, x, 1, y, 1 );

var z = y.get( 0 );
// returns <Complex64>

var re = real( z );
// returns 1.0

var im = imag( z );
// returns 2.0

z = x.get( 0 );
// returns <Complex64>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

The function has the following parameters:

  • N: number of values to swap.
  • x: input Complex64Array.
  • strideX: index increment for x.
  • y: destination Complex64Array.
  • strideY: index increment for y.

The N and stride parameters determine how values from x are interchanged with values from y. For example, to interchange in reverse order every other value in x into the first N elements of y,

var Complex64Array = require( '@stdlib/array/complex64' );
var floor = require( '@stdlib/math/base/special/floor' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

var N = floor( x.length / 2 );

cswap( N, x, -2, y, 1 );

var z = y.get( 0 );
// returns <Complex64>

var re = real( z );
// returns 5.0

var im = imag( z );
// returns 6.0

z = x.get( 0 );
// returns <Complex64>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex64Array = require( '@stdlib/array/complex64' );
var floor = require( '@stdlib/math/base/special/floor' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

// Initial arrays...
var x0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex64Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

var N = floor( x0.length / 2 );

// Interchange in reverse order every other value from `x1` into `y1`...
cswap( N, x1, -2, y1, 1 );

var z = y0.get( 2 );
// returns <Complex64>

var re = real( z );
// returns 7.0

var im = imag( z );
// returns 8.0

z = x0.get( 1 );
// returns <Complex64>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

cswap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Interchanges two complex single-precision floating-point vectors using alternative indexing semantics.

var Complex64Array = require( '@stdlib/array/complex64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap.ndarray( x.length, x, 1, 0, y, 1, 0 );

var z = y.get( 0 );
// returns <Complex64>

var re = real( z );
// returns 1.0

var im = imag( z );
// returns 2.0

z = x.get( 0 );
// returns <Complex64>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to interchange every other value in x starting from the second value into the last N elements in y where x[i] = y[n], x[i+2] = y[n-1],...,

var Complex64Array = require( '@stdlib/array/complex64' );
var floor = require( '@stdlib/math/base/special/floor' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

var N = floor( x.length / 2 );

cswap.ndarray( N, x, 2, 1, y, -1, y.length-1 );

var z = y.get( y.length-1 );
// returns <Complex64>

var re = real( z );
// returns 3.0

var im = imag( z );
// returns 4.0

z = x.get( x.length-1 );
// returns <Complex64>

re = real( z );
// returns 0.0

im = imag( z );
// returns 0.0

Notes

  • If N <= 0, both functions leave x and y unchanged.
  • cswap() corresponds to the BLAS level 1 function cswap.

Examples

var discreteUniform = require( '@stdlib/random/base/discrete-uniform' );
var Complex64Array = require( '@stdlib/array/complex64' );
var cswap = require( '@stdlib/blas/base/cswap' );

var re = discreteUniform.factory( 0, 10 );
var im = discreteUniform.factory( -5, 5 );

var x = new Complex64Array( 10 );
var y = new Complex64Array( 10 );

var i;
for ( i = 0; i < x.length; i++ ) {
    x.set( [ re(), im() ], i );
    y.set( [ re(), im() ], i );
}
console.log( x.get( 0 ).toString() );
console.log( y.get( 0 ).toString() );

// Swap elements in `x` and `y` starting from the end of `y`:
cswap( x.length, x, 1, y, -1 );
console.log( x.get( x.length-1 ).toString() );
console.log( y.get( y.length-1 ).toString() );