758 lines
82 KiB
Markdown
758 lines
82 KiB
Markdown
<!--
|
||
|
||
@license Apache-2.0
|
||
|
||
Copyright (c) 2018 The Stdlib Authors.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License");
|
||
you may not use this file except in compliance with the License.
|
||
You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software
|
||
distributed under the License is distributed on an "AS IS" BASIS,
|
||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
See the License for the specific language governing permissions and
|
||
limitations under the License.
|
||
|
||
-->
|
||
|
||
# Base Statistics
|
||
|
||
> Standard library base statistical functions.
|
||
|
||
<section class="usage">
|
||
|
||
## Usage
|
||
|
||
```javascript
|
||
var stats = require( '@stdlib/stats/base' );
|
||
```
|
||
|
||
#### stats
|
||
|
||
Standard library base statistical functions.
|
||
|
||
```javascript
|
||
var ns = stats;
|
||
// returns {...}
|
||
```
|
||
|
||
The namespace contains the following sub-namespaces:
|
||
|
||
<!-- <toc pattern="dists"> -->
|
||
|
||
<div class="namespace-toc">
|
||
|
||
- <span class="signature">[`dists`][@stdlib/stats/base/dists]</span><span class="delimiter">: </span><span class="description">standard library probability distribution modules.</span>
|
||
|
||
</div>
|
||
|
||
<!-- </toc> -->
|
||
|
||
The namespace contains the following statistical functions:
|
||
|
||
<!-- <toc pattern="*"> -->
|
||
|
||
<div class="namespace-toc">
|
||
|
||
- <span class="signature">[`cumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of a strided array.</span>
|
||
- <span class="signature">[`cumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of a strided array.</span>
|
||
- <span class="signature">[`cumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of a strided array.</span>
|
||
- <span class="signature">[`cuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of a strided array.</span>
|
||
- <span class="signature">[`dcumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of double-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`dcumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`dcumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of double-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`dcuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`dmax( N, x, stride )`][@stdlib/stats/base/dmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmaxabs( N, x, stride )`][@stdlib/stats/base/dmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmaxabssorted( N, x, stride )`][@stdlib/stats/base/dmaxabssorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a sorted double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmaxsorted( N, x, stride )`][@stdlib/stats/base/dmaxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmean( N, x, stride )`][@stdlib/stats/base/dmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`dmeankbn2( N, x, stride )`][@stdlib/stats/base/dmeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`dmeanli( N, x, stride )`][@stdlib/stats/base/dmeanli]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
|
||
- <span class="signature">[`dmeanors( N, x, stride )`][@stdlib/stats/base/dmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.</span>
|
||
- <span class="signature">[`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`dmeanpw( N, x, stride )`][@stdlib/stats/base/dmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.</span>
|
||
- <span class="signature">[`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]</span><span class="delimiter">: </span><span class="description">calculate the mean and standard deviation of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dmeanwd( N, x, stride )`][@stdlib/stats/base/dmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmidrange( N, x, stride )`][@stdlib/stats/base/dmidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmin( N, x, stride )`][@stdlib/stats/base/dmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dminabs( N, x, stride )`][@stdlib/stats/base/dminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`dmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`dnanmax( N, x, stride )`][@stdlib/stats/base/dnanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmaxabs( N, x, stride )`][@stdlib/stats/base/dnanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmeanors( N, x, stride )`][@stdlib/stats/base/dnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
|
||
- <span class="signature">[`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
|
||
- <span class="signature">[`dnanmeanwd( N, x, stride )`][@stdlib/stats/base/dnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmin( N, x, stride )`][@stdlib/stats/base/dnanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanminabs( N, x, stride )`][@stdlib/stats/base/dnanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanrange( N, x, stride )`][@stdlib/stats/base/dnanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dnanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`dnanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`dnanvariancech( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dnanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dnanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`dnanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`drange( N, x, stride )`][@stdlib/stats/base/drange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`dsemwd( N, correction, x, stride )`][@stdlib/stats/base/dsemwd]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsmeanpn( N, x, stride )`][@stdlib/stats/base/dsmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsmeanpw( N, x, stride )`][@stdlib/stats/base/dsmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsmeanwd( N, x, stride )`][@stdlib/stats/base/dsmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsnanmeanpn( N, x, stride )`][@stdlib/stats/base/dsnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsnanmeanwd( N, x, stride )`][@stdlib/stats/base/dsnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
|
||
- <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dstdevch( N, correction, x, stride )`][@stdlib/stats/base/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`dstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`dstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
|
||
- <span class="signature">[`dvariance( N, correction, x, stride )`][@stdlib/stats/base/dvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array.</span>
|
||
- <span class="signature">[`dvariancech( N, correction, x, stride )`][@stdlib/stats/base/dvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`dvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`dvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`dvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`dvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
|
||
- <span class="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
|
||
- <span class="signature">[`dvarmtk( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmtk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function.</span>
|
||
- <span class="signature">[`max( N, x, stride )`][@stdlib/stats/base/max]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array.</span>
|
||
- <span class="signature">[`maxabs( N, x, stride )`][@stdlib/stats/base/maxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a strided array.</span>
|
||
- <span class="signature">[`maxsorted( N, x, stride )`][@stdlib/stats/base/maxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted strided array.</span>
|
||
- <span class="signature">[`mean( N, x, stride )`][@stdlib/stats/base/mean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array.</span>
|
||
- <span class="signature">[`meankbn( N, x, stride )`][@stdlib/stats/base/meankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`meankbn2( N, x, stride )`][@stdlib/stats/base/meankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`meanors( N, x, stride )`][@stdlib/stats/base/meanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using ordinary recursive summation.</span>
|
||
- <span class="signature">[`meanpn( N, x, stride )`][@stdlib/stats/base/meanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`meanpw( N, x, stride )`][@stdlib/stats/base/meanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using pairwise summation.</span>
|
||
- <span class="signature">[`meanwd( N, x, stride )`][@stdlib/stats/base/meanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`mediansorted( N, x, stride )`][@stdlib/stats/base/mediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted strided array.</span>
|
||
- <span class="signature">[`minBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/min-by]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array via a callback function.</span>
|
||
- <span class="signature">[`min( N, x, stride )`][@stdlib/stats/base/min]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array.</span>
|
||
- <span class="signature">[`minabs( N, x, stride )`][@stdlib/stats/base/minabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a strided array.</span>
|
||
- <span class="signature">[`minsorted( N, x, stride )`][@stdlib/stats/base/minsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted strided array.</span>
|
||
- <span class="signature">[`mskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array according to a mask.</span>
|
||
- <span class="signature">[`mskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array according to a mask.</span>
|
||
- <span class="signature">[`mskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array according to a mask.</span>
|
||
- <span class="signature">[`nanmaxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmax-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmax( N, x, stride )`][@stdlib/stats/base/nanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmaxabs( N, x, stride )`][@stdlib/stats/base/nanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmean( N, x, stride )`][@stdlib/stats/base/nanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
|
||
- <span class="signature">[`nanmeanpn( N, x, stride )`][@stdlib/stats/base/nanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmin( N, x, stride )`][@stdlib/stats/base/nanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanminabs( N, x, stride )`][@stdlib/stats/base/nanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanrangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanrange-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanrange( N, x, stride )`][@stdlib/stats/base/nanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanstdev( N, correction, x, stride )`][@stdlib/stats/base/nanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanstdevch( N, correction, x, stride )`][@stdlib/stats/base/nanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`nanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/nanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`nanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/nanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`nanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/nanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`nanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/nanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function.</span>
|
||
- <span class="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array.</span>
|
||
- <span class="signature">[`scumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of single-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`scumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of single-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.</span>
|
||
- <span class="signature">[`sdsmean( N, x, stride )`][@stdlib/stats/base/sdsmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.</span>
|
||
- <span class="signature">[`sdsmeanors( N, x, stride )`][@stdlib/stats/base/sdsmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.</span>
|
||
- <span class="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
|
||
- <span class="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
|
||
- <span class="signature">[`smax( N, x, stride )`][@stdlib/stats/base/smax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smaxabs( N, x, stride )`][@stdlib/stats/base/smaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smaxabssorted( N, x, stride )`][@stdlib/stats/base/smaxabssorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a sorted single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smaxsorted( N, x, stride )`][@stdlib/stats/base/smaxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
|
||
- <span class="signature">[`smeanli( N, x, stride )`][@stdlib/stats/base/smeanli]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
|
||
- <span class="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
|
||
- <span class="signature">[`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`smeanpw( N, x, stride )`][@stdlib/stats/base/smeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.</span>
|
||
- <span class="signature">[`smeanwd( N, x, stride )`][@stdlib/stats/base/smeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`smediansorted( N, x, stride )`][@stdlib/stats/base/smediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smidrange( N, x, stride )`][@stdlib/stats/base/smidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smin( N, x, stride )`][@stdlib/stats/base/smin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`sminabs( N, x, stride )`][@stdlib/stats/base/sminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`sminsorted( N, x, stride )`][@stdlib/stats/base/sminsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`smskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`smskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`smskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array according to a mask.</span>
|
||
- <span class="signature">[`snanmax( N, x, stride )`][@stdlib/stats/base/snanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmaxabs( N, x, stride )`][@stdlib/stats/base/snanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmeanors( N, x, stride )`][@stdlib/stats/base/snanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
|
||
- <span class="signature">[`snanmeanpn( N, x, stride )`][@stdlib/stats/base/snanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
|
||
- <span class="signature">[`snanmeanwd( N, x, stride )`][@stdlib/stats/base/snanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`snanmin( N, x, stride )`][@stdlib/stats/base/snanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanminabs( N, x, stride )`][@stdlib/stats/base/snanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanrange( N, x, stride )`][@stdlib/stats/base/snanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanstdev( N, correction, x, stride )`][@stdlib/stats/base/snanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanstdevch( N, correction, x, stride )`][@stdlib/stats/base/snanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`snanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/snanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`snanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/snanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`snanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/snanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`snanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/snanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`snanvariance( N, correction, x, stride )`][@stdlib/stats/base/snanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values.</span>
|
||
- <span class="signature">[`snanvariancech( N, correction, x, stride )`][@stdlib/stats/base/snanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`snanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/snanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
|
||
- <span class="signature">[`snanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/snanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
|
||
- <span class="signature">[`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`srange( N, x, stride )`][@stdlib/stats/base/srange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`sstdev( N, correction, x, stride )`][@stdlib/stats/base/sstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`sstdevch( N, correction, x, stride )`][@stdlib/stats/base/sstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`sstdevpn( N, correction, x, stride )`][@stdlib/stats/base/sstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`sstdevtk( N, correction, x, stride )`][@stdlib/stats/base/sstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`sstdevyc( N, correction, x, stride )`][@stdlib/stats/base/sstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array.</span>
|
||
- <span class="signature">[`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array.</span>
|
||
- <span class="signature">[`svariancech( N, correction, x, stride )`][@stdlib/stats/base/svariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`svariancetk( N, correction, x, stride )`][@stdlib/stats/base/svariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
- <span class="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array.</span>
|
||
- <span class="signature">[`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
|
||
- <span class="signature">[`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a two-pass algorithm.</span>
|
||
- <span class="signature">[`variancetk( N, correction, x, stride )`][@stdlib/stats/base/variancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass textbook algorithm.</span>
|
||
- <span class="signature">[`variancewd( N, correction, x, stride )`][@stdlib/stats/base/variancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using Welford's algorithm.</span>
|
||
- <span class="signature">[`varianceyc( N, correction, x, stride )`][@stdlib/stats/base/varianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
||
|
||
</div>
|
||
|
||
<!-- </toc> -->
|
||
|
||
</section>
|
||
|
||
<!-- /.usage -->
|
||
|
||
<!-- Package notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
|
||
|
||
<section class="notes">
|
||
|
||
</section>
|
||
|
||
<!-- /.notes -->
|
||
|
||
<section class="examples">
|
||
|
||
## Examples
|
||
|
||
<!-- TODO: better examples -->
|
||
|
||
<!-- eslint no-undef: "error" -->
|
||
|
||
```javascript
|
||
var objectKeys = require( '@stdlib/utils/keys' );
|
||
var ns = require( '@stdlib/stats/base' );
|
||
|
||
console.log( objectKeys( ns ) );
|
||
```
|
||
|
||
</section>
|
||
|
||
<!-- /.examples -->
|
||
|
||
<section class="links">
|
||
|
||
<!-- <toc-links> -->
|
||
|
||
[@stdlib/stats/base/cumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumax
|
||
|
||
[@stdlib/stats/base/cumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumaxabs
|
||
|
||
[@stdlib/stats/base/cumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumin
|
||
|
||
[@stdlib/stats/base/cuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cuminabs
|
||
|
||
[@stdlib/stats/base/dcumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumax
|
||
|
||
[@stdlib/stats/base/dcumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumaxabs
|
||
|
||
[@stdlib/stats/base/dcumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumin
|
||
|
||
[@stdlib/stats/base/dcuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcuminabs
|
||
|
||
[@stdlib/stats/base/dmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmax
|
||
|
||
[@stdlib/stats/base/dmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxabs
|
||
|
||
[@stdlib/stats/base/dmaxabssorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxabssorted
|
||
|
||
[@stdlib/stats/base/dmaxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxsorted
|
||
|
||
[@stdlib/stats/base/dmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmean
|
||
|
||
[@stdlib/stats/base/dmeankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeankbn
|
||
|
||
[@stdlib/stats/base/dmeankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeankbn2
|
||
|
||
[@stdlib/stats/base/dmeanli]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanli
|
||
|
||
[@stdlib/stats/base/dmeanlipw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanlipw
|
||
|
||
[@stdlib/stats/base/dmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanors
|
||
|
||
[@stdlib/stats/base/dmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanpn
|
||
|
||
[@stdlib/stats/base/dmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanpw
|
||
|
||
[@stdlib/stats/base/dmeanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanstdev
|
||
|
||
[@stdlib/stats/base/dmeanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanstdevpn
|
||
|
||
[@stdlib/stats/base/dmeanvar]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanvar
|
||
|
||
[@stdlib/stats/base/dmeanvarpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanvarpn
|
||
|
||
[@stdlib/stats/base/dmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanwd
|
||
|
||
[@stdlib/stats/base/dmediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmediansorted
|
||
|
||
[@stdlib/stats/base/dmidrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmidrange
|
||
|
||
[@stdlib/stats/base/dmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmin
|
||
|
||
[@stdlib/stats/base/dminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dminabs
|
||
|
||
[@stdlib/stats/base/dminsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dminsorted
|
||
|
||
[@stdlib/stats/base/dmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskmax
|
||
|
||
[@stdlib/stats/base/dmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskmin
|
||
|
||
[@stdlib/stats/base/dmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskrange
|
||
|
||
[@stdlib/stats/base/dnanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmax
|
||
|
||
[@stdlib/stats/base/dnanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmaxabs
|
||
|
||
[@stdlib/stats/base/dnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmean
|
||
|
||
[@stdlib/stats/base/dnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanors
|
||
|
||
[@stdlib/stats/base/dnanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanpn
|
||
|
||
[@stdlib/stats/base/dnanmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanpw
|
||
|
||
[@stdlib/stats/base/dnanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanwd
|
||
|
||
[@stdlib/stats/base/dnanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmin
|
||
|
||
[@stdlib/stats/base/dnanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanminabs
|
||
|
||
[@stdlib/stats/base/dnanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskmax
|
||
|
||
[@stdlib/stats/base/dnanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskmin
|
||
|
||
[@stdlib/stats/base/dnanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskrange
|
||
|
||
[@stdlib/stats/base/dnanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanrange
|
||
|
||
[@stdlib/stats/base/dnanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdev
|
||
|
||
[@stdlib/stats/base/dnanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevch
|
||
|
||
[@stdlib/stats/base/dnanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevpn
|
||
|
||
[@stdlib/stats/base/dnanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevtk
|
||
|
||
[@stdlib/stats/base/dnanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevwd
|
||
|
||
[@stdlib/stats/base/dnanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevyc
|
||
|
||
[@stdlib/stats/base/dnanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariance
|
||
|
||
[@stdlib/stats/base/dnanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancech
|
||
|
||
[@stdlib/stats/base/dnanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancepn
|
||
|
||
[@stdlib/stats/base/dnanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancetk
|
||
|
||
[@stdlib/stats/base/dnanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancewd
|
||
|
||
[@stdlib/stats/base/dnanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvarianceyc
|
||
|
||
[@stdlib/stats/base/drange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/drange
|
||
|
||
[@stdlib/stats/base/dsem]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsem
|
||
|
||
[@stdlib/stats/base/dsemch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemch
|
||
|
||
[@stdlib/stats/base/dsempn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsempn
|
||
|
||
[@stdlib/stats/base/dsemtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemtk
|
||
|
||
[@stdlib/stats/base/dsemwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemwd
|
||
|
||
[@stdlib/stats/base/dsemyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemyc
|
||
|
||
[@stdlib/stats/base/dsmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmean
|
||
|
||
[@stdlib/stats/base/dsmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanors
|
||
|
||
[@stdlib/stats/base/dsmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanpn
|
||
|
||
[@stdlib/stats/base/dsmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanpw
|
||
|
||
[@stdlib/stats/base/dsmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanwd
|
||
|
||
[@stdlib/stats/base/dsnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmean
|
||
|
||
[@stdlib/stats/base/dsnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanors
|
||
|
||
[@stdlib/stats/base/dsnanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanpn
|
||
|
||
[@stdlib/stats/base/dsnanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanwd
|
||
|
||
[@stdlib/stats/base/dstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdev
|
||
|
||
[@stdlib/stats/base/dstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevch
|
||
|
||
[@stdlib/stats/base/dstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevpn
|
||
|
||
[@stdlib/stats/base/dstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevtk
|
||
|
||
[@stdlib/stats/base/dstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevwd
|
||
|
||
[@stdlib/stats/base/dstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevyc
|
||
|
||
[@stdlib/stats/base/dsvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsvariance
|
||
|
||
[@stdlib/stats/base/dsvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsvariancepn
|
||
|
||
[@stdlib/stats/base/dvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariance
|
||
|
||
[@stdlib/stats/base/dvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancech
|
||
|
||
[@stdlib/stats/base/dvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancepn
|
||
|
||
[@stdlib/stats/base/dvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancetk
|
||
|
||
[@stdlib/stats/base/dvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancewd
|
||
|
||
[@stdlib/stats/base/dvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarianceyc
|
||
|
||
[@stdlib/stats/base/dvarm]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarm
|
||
|
||
[@stdlib/stats/base/dvarmpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarmpn
|
||
|
||
[@stdlib/stats/base/dvarmtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarmtk
|
||
|
||
[@stdlib/stats/base/max-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/max-by
|
||
|
||
[@stdlib/stats/base/max]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/max
|
||
|
||
[@stdlib/stats/base/maxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/maxabs
|
||
|
||
[@stdlib/stats/base/maxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/maxsorted
|
||
|
||
[@stdlib/stats/base/mean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mean
|
||
|
||
[@stdlib/stats/base/meankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meankbn
|
||
|
||
[@stdlib/stats/base/meankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meankbn2
|
||
|
||
[@stdlib/stats/base/meanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanors
|
||
|
||
[@stdlib/stats/base/meanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanpn
|
||
|
||
[@stdlib/stats/base/meanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanpw
|
||
|
||
[@stdlib/stats/base/meanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanwd
|
||
|
||
[@stdlib/stats/base/mediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mediansorted
|
||
|
||
[@stdlib/stats/base/min-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/min-by
|
||
|
||
[@stdlib/stats/base/min]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/min
|
||
|
||
[@stdlib/stats/base/minabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/minabs
|
||
|
||
[@stdlib/stats/base/minsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/minsorted
|
||
|
||
[@stdlib/stats/base/mskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskmax
|
||
|
||
[@stdlib/stats/base/mskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskmin
|
||
|
||
[@stdlib/stats/base/mskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskrange
|
||
|
||
[@stdlib/stats/base/nanmax-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmax-by
|
||
|
||
[@stdlib/stats/base/nanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmax
|
||
|
||
[@stdlib/stats/base/nanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmaxabs
|
||
|
||
[@stdlib/stats/base/nanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmean
|
||
|
||
[@stdlib/stats/base/nanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanors
|
||
|
||
[@stdlib/stats/base/nanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanpn
|
||
|
||
[@stdlib/stats/base/nanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanwd
|
||
|
||
[@stdlib/stats/base/nanmin-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmin-by
|
||
|
||
[@stdlib/stats/base/nanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmin
|
||
|
||
[@stdlib/stats/base/nanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanminabs
|
||
|
||
[@stdlib/stats/base/nanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskmax
|
||
|
||
[@stdlib/stats/base/nanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskmin
|
||
|
||
[@stdlib/stats/base/nanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskrange
|
||
|
||
[@stdlib/stats/base/nanrange-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanrange-by
|
||
|
||
[@stdlib/stats/base/nanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanrange
|
||
|
||
[@stdlib/stats/base/nanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdev
|
||
|
||
[@stdlib/stats/base/nanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevch
|
||
|
||
[@stdlib/stats/base/nanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevpn
|
||
|
||
[@stdlib/stats/base/nanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevtk
|
||
|
||
[@stdlib/stats/base/nanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevwd
|
||
|
||
[@stdlib/stats/base/nanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevyc
|
||
|
||
[@stdlib/stats/base/nanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariance
|
||
|
||
[@stdlib/stats/base/nanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancech
|
||
|
||
[@stdlib/stats/base/nanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancepn
|
||
|
||
[@stdlib/stats/base/nanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancetk
|
||
|
||
[@stdlib/stats/base/nanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancewd
|
||
|
||
[@stdlib/stats/base/nanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvarianceyc
|
||
|
||
[@stdlib/stats/base/range-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/range-by
|
||
|
||
[@stdlib/stats/base/range]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/range
|
||
|
||
[@stdlib/stats/base/scumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumax
|
||
|
||
[@stdlib/stats/base/scumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumaxabs
|
||
|
||
[@stdlib/stats/base/scumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumin
|
||
|
||
[@stdlib/stats/base/scuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scuminabs
|
||
|
||
[@stdlib/stats/base/sdsmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsmean
|
||
|
||
[@stdlib/stats/base/sdsmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsmeanors
|
||
|
||
[@stdlib/stats/base/sdsnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsnanmean
|
||
|
||
[@stdlib/stats/base/sdsnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsnanmeanors
|
||
|
||
[@stdlib/stats/base/smax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smax
|
||
|
||
[@stdlib/stats/base/smaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxabs
|
||
|
||
[@stdlib/stats/base/smaxabssorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxabssorted
|
||
|
||
[@stdlib/stats/base/smaxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxsorted
|
||
|
||
[@stdlib/stats/base/smean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smean
|
||
|
||
[@stdlib/stats/base/smeankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeankbn
|
||
|
||
[@stdlib/stats/base/smeankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeankbn2
|
||
|
||
[@stdlib/stats/base/smeanli]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanli
|
||
|
||
[@stdlib/stats/base/smeanlipw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanlipw
|
||
|
||
[@stdlib/stats/base/smeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanors
|
||
|
||
[@stdlib/stats/base/smeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanpn
|
||
|
||
[@stdlib/stats/base/smeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanpw
|
||
|
||
[@stdlib/stats/base/smeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanwd
|
||
|
||
[@stdlib/stats/base/smediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smediansorted
|
||
|
||
[@stdlib/stats/base/smidrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smidrange
|
||
|
||
[@stdlib/stats/base/smin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smin
|
||
|
||
[@stdlib/stats/base/sminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sminabs
|
||
|
||
[@stdlib/stats/base/sminsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sminsorted
|
||
|
||
[@stdlib/stats/base/smskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskmax
|
||
|
||
[@stdlib/stats/base/smskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskmin
|
||
|
||
[@stdlib/stats/base/smskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskrange
|
||
|
||
[@stdlib/stats/base/snanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmax
|
||
|
||
[@stdlib/stats/base/snanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmaxabs
|
||
|
||
[@stdlib/stats/base/snanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmean
|
||
|
||
[@stdlib/stats/base/snanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanors
|
||
|
||
[@stdlib/stats/base/snanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanpn
|
||
|
||
[@stdlib/stats/base/snanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanwd
|
||
|
||
[@stdlib/stats/base/snanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmin
|
||
|
||
[@stdlib/stats/base/snanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanminabs
|
||
|
||
[@stdlib/stats/base/snanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskmax
|
||
|
||
[@stdlib/stats/base/snanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskmin
|
||
|
||
[@stdlib/stats/base/snanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskrange
|
||
|
||
[@stdlib/stats/base/snanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanrange
|
||
|
||
[@stdlib/stats/base/snanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdev
|
||
|
||
[@stdlib/stats/base/snanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevch
|
||
|
||
[@stdlib/stats/base/snanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevpn
|
||
|
||
[@stdlib/stats/base/snanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevtk
|
||
|
||
[@stdlib/stats/base/snanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevwd
|
||
|
||
[@stdlib/stats/base/snanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevyc
|
||
|
||
[@stdlib/stats/base/snanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariance
|
||
|
||
[@stdlib/stats/base/snanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancech
|
||
|
||
[@stdlib/stats/base/snanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancepn
|
||
|
||
[@stdlib/stats/base/snanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancetk
|
||
|
||
[@stdlib/stats/base/snanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancewd
|
||
|
||
[@stdlib/stats/base/snanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvarianceyc
|
||
|
||
[@stdlib/stats/base/srange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/srange
|
||
|
||
[@stdlib/stats/base/sstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdev
|
||
|
||
[@stdlib/stats/base/sstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevch
|
||
|
||
[@stdlib/stats/base/sstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevpn
|
||
|
||
[@stdlib/stats/base/sstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevtk
|
||
|
||
[@stdlib/stats/base/sstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevwd
|
||
|
||
[@stdlib/stats/base/sstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevyc
|
||
|
||
[@stdlib/stats/base/stdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdev
|
||
|
||
[@stdlib/stats/base/stdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevch
|
||
|
||
[@stdlib/stats/base/stdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevpn
|
||
|
||
[@stdlib/stats/base/stdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevtk
|
||
|
||
[@stdlib/stats/base/stdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevwd
|
||
|
||
[@stdlib/stats/base/stdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevyc
|
||
|
||
[@stdlib/stats/base/svariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariance
|
||
|
||
[@stdlib/stats/base/svariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancech
|
||
|
||
[@stdlib/stats/base/svariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancepn
|
||
|
||
[@stdlib/stats/base/svariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancetk
|
||
|
||
[@stdlib/stats/base/svariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancewd
|
||
|
||
[@stdlib/stats/base/svarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svarianceyc
|
||
|
||
[@stdlib/stats/base/variance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variance
|
||
|
||
[@stdlib/stats/base/variancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancech
|
||
|
||
[@stdlib/stats/base/variancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancepn
|
||
|
||
[@stdlib/stats/base/variancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancetk
|
||
|
||
[@stdlib/stats/base/variancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancewd
|
||
|
||
[@stdlib/stats/base/varianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/varianceyc
|
||
|
||
[@stdlib/stats/base/dists]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dists
|
||
|
||
<!-- </toc-links> -->
|
||
|
||
</section>
|
||
|
||
<!-- /.links -->
|