time-to-botec/squiggle/node_modules/@stdlib/blas/ext/base/dnanasum/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

5.2 KiB

dnanasum

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.

The L1 norm is defined as

L1 norm definition.

Usage

var dnanasum = require( '@stdlib/blas/ext/base/dnanasum' );

dnanasum( N, x, stride )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasum( N, x, 1 );
// returns 5.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) every other element in x,

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dnanasum( N, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dnanasum( N, x1, 2 );
// returns 9.0

dnanasum.ndarray( N, x, stride, offset )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasum.ndarray( N, x, 1, 0 );
// returns 5.0

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) every other value in x starting from the second value

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dnanasum.ndarray( N, x, 2, 1 );
// returns 9.0

Notes

  • If N <= 0, both functions return 0.0.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dnanasum = require( '@stdlib/blas/ext/base/dnanasum' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( randu()*100.0 );
    }
}
console.log( x );

var v = dnanasum( x.length, x, 1 );
console.log( v );