time-to-botec/js/node_modules/@stdlib/stats/incr/cv/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

5.3 KiB

incrcv

Compute the coefficient of variation (CV) incrementally.

The corrected sample standard deviation is defined as

Equation for the corrected sample standard deviation.

and the arithmetic mean is defined as

Equation for the arithmetic mean.

The coefficient of variation (also known as relative standard deviation, RSD) is defined as

Equation for the coefficient of variation (CV).

Usage

var incrcv = require( '@stdlib/stats/incr/cv' );

incrcv( [mean] )

Returns an accumulator function which incrementally computes the coefficient of variation.

var accumulator = incrcv();

If the mean is already known, provide a mean argument.

var accumulator = incrcv( 3.0 );

accumulator( [x] )

If provided an input value x, the accumulator function returns an updated accumulated value. If not provided an input value x, the accumulator function returns the current accumulated value.

var accumulator = incrcv();

var cv = accumulator( 2.0 );
// returns 0.0

cv = accumulator( 1.0 ); // => s^2 = ((2-1.5)^2+(1-1.5)^2) / (2-1)
// returns ~0.47

cv = accumulator( 3.0 ); // => s^2 = ((2-2)^2+(1-2)^2+(3-2)^2) / (3-1)
// returns 0.5

cv = accumulator();
// returns 0.5

Notes

  • Input values are not type checked. If provided NaN or a value which, when used in computations, results in NaN, the accumulated value is NaN for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
  • The coefficient of variation is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
  • For small and moderately sized samples, the accumulated value tends to be too low and is thus a biased estimator. Provided the generating distribution is known (e.g., a normal distribution), you may want to adjust the accumulated value or use an alternative implementation providing an unbiased estimator.

Examples

var randu = require( '@stdlib/random/base/randu' );
var incrcv = require( '@stdlib/stats/incr/cv' );

var accumulator;
var v;
var i;

// Initialize an accumulator:
accumulator = incrcv();

// For each simulated datum, update the coefficient of variation...
for ( i = 0; i < 100; i++ ) {
    v = randu() * 100.0;
    accumulator( v );
}
console.log( accumulator() );