time-to-botec/js/node_modules/@stdlib/blas/ext/base/dnannsumkbn2/README.md
NunoSempere b6addc7f05 feat: add the node modules
Necessary in order to clearly see the squiggle hotwiring.
2022-12-03 12:44:49 +00:00

5.6 KiB
Raw Permalink Blame History

dnannsumkbn2

Calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative KahanBabuška algorithm.

Usage

var dnannsumkbn2 = require( '@stdlib/blas/ext/base/dnannsumkbn2' );

dnannsumkbn2( N, x, strideX, out, strideOut )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative KahanBabuška algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );

var v = dnannsumkbn2( x.length, x, 1, out, 1 );
// returns <Float64Array>[ 1.0, 3 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.
  • out: output Float64Array whose first element is the sum and whose second element is the number of non-NaN elements.
  • strideOut: index increment for out.

The N and stride parameters determine which elements are accessed at runtime. For example, to compute the sum of every other element in x,

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var out = new Float64Array( 2 );
var N = floor( x.length / 2 );

var v = dnannsumkbn2( N, x, 2, out, 1 );
// returns <Float64Array>[ 5.0, 2 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var out0 = new Float64Array( 4 );
var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

var N = floor( x0.length / 2 );

var v = dnannsumkbn2( N, x1, 2, out1, 1 );
// returns <Float64Array>[ 5.0, 4 ]

dnannsumkbn2.ndarray( N, x, strideX, offsetX, out, strideOut, offsetOut )

Computes the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative KahanBabuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var out = new Float64Array( 2 );

var v = dnannsumkbn2.ndarray( x.length, x, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 1.0, 3 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetOut: starting index for out.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x starting from the second value

var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( 4 );
var N = floor( x.length / 2 );

var v = dnannsumkbn2.ndarray( N, x, 2, 1, out, 2, 1 );
// returns <Float64Array>[ 0.0, 5.0, 0.0, 4 ]

Notes

  • If N <= 0, both functions return a sum equal to 0.0.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dnannsumkbn2 = require( '@stdlib/blas/ext/base/dnannsumkbn2' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( randu()*100.0 );
    }
}
console.log( x );

var out = new Float64Array( 2 );
dnannsumkbn2( x.length, x, 1, out, 1 );
console.log( out );

References

  • Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." Computing 76 (3): 27993. doi:10.1007/s00607-005-0139-x.