135 lines
4.1 KiB
Plaintext
135 lines
4.1 KiB
Plaintext
|
||
{{alias}}( N, scalar, x, strideX, y, strideY )
|
||
Computes the dot product of two single-precision floating-point vectors with
|
||
extended accumulation.
|
||
|
||
The `N`, `strideX`, and `strideY` parameters determine which elements in `x`
|
||
and `y` are accessed at runtime.
|
||
|
||
Indexing is relative to the first index. To introduce an offset, use a typed
|
||
array view.
|
||
|
||
If `N <= 0` the function returns `scalar`.
|
||
|
||
Parameters
|
||
----------
|
||
N: integer
|
||
Number of indexed elements.
|
||
|
||
scalar: number
|
||
Scalar constant added to dot product.
|
||
|
||
x: Float32Array
|
||
First input array.
|
||
|
||
strideX: integer
|
||
Index increment for `x`.
|
||
|
||
y: Float32Array
|
||
Second input array.
|
||
|
||
strideY: integer
|
||
Index increment for `y`.
|
||
|
||
Returns
|
||
-------
|
||
dot: number
|
||
The dot product of `x` and `y`.
|
||
|
||
Examples
|
||
--------
|
||
// Standard usage:
|
||
> var x = new {{alias:@stdlib/array/float32}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
|
||
> var y = new {{alias:@stdlib/array/float32}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
|
||
> var dot = {{alias}}( x.length, 0.0, x, 1, y, 1 )
|
||
-5.0
|
||
|
||
// Strides:
|
||
> x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
||
> y = new {{alias:@stdlib/array/float32}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
|
||
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
> dot = {{alias}}( N, 0.0, x, 2, y, -1 )
|
||
9.0
|
||
|
||
// Using view offsets:
|
||
> x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
||
> y = new {{alias:@stdlib/array/float32}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
|
||
> var x1 = new {{alias:@stdlib/array/float32}}( x.buffer, x.BYTES_PER_ELEMENT*1 );
|
||
> var y1 = new {{alias:@stdlib/array/float32}}( y.buffer, y.BYTES_PER_ELEMENT*3 );
|
||
> N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
> dot = {{alias}}( N, 0.0, x1, -2, y1, 1 )
|
||
128.0
|
||
|
||
{{alias}}.ndarray( N, scalar, x, strideX, offsetX, y, strideY, offsetY )
|
||
Computes the dot product of two single-precision floating-point vectors
|
||
using alternative indexing semantics and with extended accumulation.
|
||
|
||
While typed array views mandate a view offset based on the underlying
|
||
buffer, the `offsetX` and `offsetY` parameters support indexing based on a
|
||
starting index.
|
||
|
||
Parameters
|
||
----------
|
||
N: integer
|
||
Number of indexed elements.
|
||
|
||
scalar: number
|
||
Scalar constant added to dot product.
|
||
|
||
x: Float32Array
|
||
First input array.
|
||
|
||
strideX: integer
|
||
Index increment for `x`.
|
||
|
||
offsetX: integer
|
||
Starting index for `x`.
|
||
|
||
y: Float32Array
|
||
Second input array.
|
||
|
||
strideY: integer
|
||
Index increment for `y`.
|
||
|
||
offsetY: integer
|
||
Starting index for `y`.
|
||
|
||
Returns
|
||
-------
|
||
dot: number
|
||
The dot product of `x` and `y`.
|
||
|
||
Examples
|
||
--------
|
||
// Standard usage:
|
||
> var x = new {{alias:@stdlib/array/float32}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
|
||
> var y = new {{alias:@stdlib/array/float32}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
|
||
> var dot = {{alias}}.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 )
|
||
-5.0
|
||
|
||
// Strides:
|
||
> x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
||
> y = new {{alias:@stdlib/array/float32}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
|
||
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
> dot = {{alias}}.ndarray( N, 0.0, x, 2, 0, y, 2, 0 )
|
||
9.0
|
||
|
||
// Using offset indices:
|
||
> x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
||
> y = new {{alias:@stdlib/array/float32}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
|
||
> N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
> dot = {{alias}}.ndarray( N, 0.0, x, -2, x.length-1, y, 1, 3 )
|
||
128.0
|
||
|
||
References
|
||
----------
|
||
- Lawson, Charles L., Richard J. Hanson, Fred T. Krogh, and David Ronald
|
||
Kincaid. 1979. "Algorithm 539: Basic Linear Algebra Subprograms for Fortran
|
||
Usage [F1]." *ACM Transactions on Mathematical Software* 5 (3). New York,
|
||
NY, USA: Association for Computing Machinery: 324–25.
|
||
doi:10.1145/355841.355848.
|
||
|
||
See Also
|
||
--------
|
||
|