{{alias}}( N, scalar, x, strideX, y, strideY ) Computes the dot product of two single-precision floating-point vectors with extended accumulation. The `N`, `strideX`, and `strideY` parameters determine which elements in `x` and `y` are accessed at runtime. Indexing is relative to the first index. To introduce an offset, use a typed array view. If `N <= 0` the function returns `scalar`. Parameters ---------- N: integer Number of indexed elements. scalar: number Scalar constant added to dot product. x: Float32Array First input array. strideX: integer Index increment for `x`. y: Float32Array Second input array. strideY: integer Index increment for `y`. Returns ------- dot: number The dot product of `x` and `y`. Examples -------- // Standard usage: > var x = new {{alias:@stdlib/array/float32}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] ); > var y = new {{alias:@stdlib/array/float32}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] ); > var dot = {{alias}}( x.length, 0.0, x, 1, y, 1 ) -5.0 // Strides: > x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); > y = new {{alias:@stdlib/array/float32}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > dot = {{alias}}( N, 0.0, x, 2, y, -1 ) 9.0 // Using view offsets: > x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); > y = new {{alias:@stdlib/array/float32}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); > var x1 = new {{alias:@stdlib/array/float32}}( x.buffer, x.BYTES_PER_ELEMENT*1 ); > var y1 = new {{alias:@stdlib/array/float32}}( y.buffer, y.BYTES_PER_ELEMENT*3 ); > N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > dot = {{alias}}( N, 0.0, x1, -2, y1, 1 ) 128.0 {{alias}}.ndarray( N, scalar, x, strideX, offsetX, y, strideY, offsetY ) Computes the dot product of two single-precision floating-point vectors using alternative indexing semantics and with extended accumulation. While typed array views mandate a view offset based on the underlying buffer, the `offsetX` and `offsetY` parameters support indexing based on a starting index. Parameters ---------- N: integer Number of indexed elements. scalar: number Scalar constant added to dot product. x: Float32Array First input array. strideX: integer Index increment for `x`. offsetX: integer Starting index for `x`. y: Float32Array Second input array. strideY: integer Index increment for `y`. offsetY: integer Starting index for `y`. Returns ------- dot: number The dot product of `x` and `y`. Examples -------- // Standard usage: > var x = new {{alias:@stdlib/array/float32}}( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] ); > var y = new {{alias:@stdlib/array/float32}}( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] ); > var dot = {{alias}}.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 ) -5.0 // Strides: > x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); > y = new {{alias:@stdlib/array/float32}}( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > dot = {{alias}}.ndarray( N, 0.0, x, 2, 0, y, 2, 0 ) 9.0 // Using offset indices: > x = new {{alias:@stdlib/array/float32}}( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); > y = new {{alias:@stdlib/array/float32}}( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); > N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > dot = {{alias}}.ndarray( N, 0.0, x, -2, x.length-1, y, 1, 3 ) 128.0 References ---------- - Lawson, Charles L., Richard J. Hanson, Fred T. Krogh, and David Ronald Kincaid. 1979. "Algorithm 539: Basic Linear Algebra Subprograms for Fortran Usage [F1]." *ACM Transactions on Mathematical Software* 5 (3). New York, NY, USA: Association for Computing Machinery: 324–25. doi:10.1145/355841.355848. See Also --------