6.5 KiB
sdsdot
Calculate the dot product of two single-precision floating-point vectors with extended accumulation.
The dot product (or scalar product) is defined as
Usage
var sdsdot = require( '@stdlib/blas/base/sdsdot' );
sdsdot( N, scalar, x, strideX, y, strideY )
Calculates the dot product of vectors x
and y
with extended accumulation.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = sdsdot( x.length, 0.0, x, 1, y, 1 );
// returns -5.0
The function has the following parameters:
- N: number of indexed elements.
- scalar: scalar constant added to the dot product.
- x: input
Float32Array
. - strideX: index increment for
x
. - y: input
Float32Array
. - strideY: index increment for
y
.
The N
and stride
parameters determine which elements in x
and y
are accessed at runtime. For example, to calculate the dot product of every other value in x
and the first N
elements of y
in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var N = floor( x.length / 2 );
var z = sdsdot( N, 0.0, x, 2, y, -1 );
// returns 9.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var N = floor( x0.length / 2 );
var z = sdsdot( N, 0.0, x1, -2, y1, 1 );
// returns 128.0
sdsdot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Calculates the dot product of vectors x
and y
with extended accumulation and using alternative indexing semantics.
var Float32Array = require( '@stdlib/array/float32' );
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
var z = sdsdot.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// returns -5.0
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, the offsetX
and offsetY
parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in x
starting from the second value with the last 3 elements in y
in reverse order
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var N = floor( x.length / 2 );
var z = sdsdot.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
// returns 128.0
Notes
Examples
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var sdsdot = require( '@stdlib/blas/base/sdsdot' );
var x;
var y;
var i;
x = new Float32Array( 10 );
y = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( randu() * 100.0 );
y[ i ] = round( randu() * 10.0 );
}
console.log( x );
console.log( y );
var z = sdsdot( x.length, 0.0, x, 1, y, -1 );
console.log( z );
References
- Lawson, Charles L., Richard J. Hanson, Fred T. Krogh, and David Ronald Kincaid. 1979. "Algorithm 539: Basic Linear Algebra Subprograms for Fortran Usage [F1]." ACM Transactions on Mathematical Software 5 (3). New York, NY, USA: Association for Computing Machinery: 324–25. doi:10.1145/355841.355848.