make format
This commit is contained in:
parent
7724115933
commit
5dead1a2c1
|
@ -1,8 +1,8 @@
|
|||
#include <math.h>
|
||||
#include <omp.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <stdio.h>
|
||||
#include <omp.h>
|
||||
|
||||
const float PI = 3.14159265358979323846;
|
||||
|
||||
|
@ -10,67 +10,73 @@ const float PI = 3.14159265358979323846;
|
|||
|
||||
//Array helpers
|
||||
|
||||
void array_print(float* array, int length) {
|
||||
for (int i = 0; i < length; i++)
|
||||
{
|
||||
void array_print(float* array, int length)
|
||||
{
|
||||
for (int i = 0; i < length; i++) {
|
||||
printf("item[%d] = %f\n", i, array[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void array_fill(float* array, int length, float item) {
|
||||
void array_fill(float* array, int length, float item)
|
||||
{
|
||||
int i;
|
||||
#pragma omp private (i)
|
||||
#pragma omp private(i)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < length; i++)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < length; i++) {
|
||||
array[i] = item;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float array_sum(float* array, int length) {
|
||||
float array_sum(float* array, int length)
|
||||
{
|
||||
float output = 0.0;
|
||||
for (int i = 0; i < length; i++)
|
||||
{
|
||||
for (int i = 0; i < length; i++) {
|
||||
output += array[i];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) {
|
||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
|
||||
{
|
||||
array_cumsummed[0] = array_to_sum[0];
|
||||
for (int i = 1; i < length; i++)
|
||||
{
|
||||
array_cumsummed[i] = array_cumsummed[i-1] + array_to_sum[i];
|
||||
for (int i = 1; i < length; i++) {
|
||||
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
|
||||
}
|
||||
}
|
||||
|
||||
float rand_float(float to) {
|
||||
return ((float)rand()/(float)RAND_MAX) * to;
|
||||
|
||||
float rand_float(float to)
|
||||
{
|
||||
return ((float)rand() / (float)RAND_MAX) * to;
|
||||
}
|
||||
|
||||
float ur_normal() {
|
||||
float ur_normal()
|
||||
{
|
||||
float u1 = rand_float(1.0);
|
||||
float u2 = rand_float(1.0);
|
||||
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||
return z;
|
||||
}
|
||||
|
||||
inline float random_uniform(float from, float to) {
|
||||
return ((float)rand()/(float)RAND_MAX)*(to-from)+from;
|
||||
inline float random_uniform(float from, float to)
|
||||
{
|
||||
return ((float)rand() / (float)RAND_MAX) * (to - from) + from;
|
||||
}
|
||||
|
||||
inline float random_normal(float mean, float sigma) {
|
||||
inline float random_normal(float mean, float sigma)
|
||||
{
|
||||
return (mean + sigma * ur_normal());
|
||||
}
|
||||
|
||||
inline float random_lognormal(float logmean, float logsigma) {
|
||||
inline float random_lognormal(float logmean, float logsigma)
|
||||
{
|
||||
return expf(random_normal(logmean, logsigma));
|
||||
}
|
||||
|
||||
inline float random_to(float low, float high) {
|
||||
inline float random_to(float low, float high)
|
||||
{
|
||||
const float NORMAL95CONFIDENCE = 1.6448536269514722;
|
||||
float loglow = logf(low);
|
||||
float loghigh = logf(high);
|
||||
|
@ -79,28 +85,32 @@ inline float random_to(float low, float high) {
|
|||
return random_lognormal(logmean, logsigma);
|
||||
}
|
||||
|
||||
void array_random_to(float* array, int length, float low, float high) {
|
||||
void array_random_to(float* array, int length, float low, float high)
|
||||
{
|
||||
int i;
|
||||
#pragma omp private(i)
|
||||
#pragma omp private(i)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < length; i++)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < length; i++) {
|
||||
array[i] = random_to(low, high);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int split_array_get_my_length(int index, int total_length, int n_threads) {
|
||||
return (total_length%n_threads > index ? total_length/n_threads+1 : total_length/n_threads);
|
||||
int split_array_get_my_length(int index, int total_length, int n_threads)
|
||||
{
|
||||
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
|
||||
}
|
||||
|
||||
//Old version, don't use it!! Optimized version is called mixture_f. This one is just for display
|
||||
void mixture(float* dists[], float* weights, int n_dists, float* results) {
|
||||
void mixture(float* dists[], float* weights, int n_dists, float* results)
|
||||
{
|
||||
float sum_weights = array_sum(weights, n_dists);
|
||||
float* normalized_weights = malloc(n_dists * sizeof(float));
|
||||
for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;}
|
||||
|
||||
for (int i = 0; i < n_dists; i++) {
|
||||
normalized_weights[i] = weights[i] / sum_weights;
|
||||
}
|
||||
|
||||
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
||||
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
||||
|
||||
|
@ -108,44 +118,42 @@ void mixture(float* dists[], float* weights, int n_dists, float* results) {
|
|||
float p1, p2;
|
||||
int index_found, index_counter, sample_index, i;
|
||||
|
||||
#pragma omp parallel private (i, p1, p2, index_found, index_counter, sample_index)
|
||||
#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < N; i++)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < N; i++) {
|
||||
p1 = random_uniform(0, 1);
|
||||
p2 = random_uniform(0, 1);
|
||||
|
||||
index_found = 0;
|
||||
index_counter = 0;
|
||||
|
||||
while ((index_found == 0) && (index_counter < n_dists))
|
||||
{
|
||||
if (p1 < cummulative_weights[index_counter])
|
||||
{
|
||||
while ((index_found == 0) && (index_counter < n_dists)) {
|
||||
if (p1 < cummulative_weights[index_counter]) {
|
||||
index_found = 1;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
index_counter++;
|
||||
}
|
||||
}
|
||||
if (index_found != 0)
|
||||
{
|
||||
sample_index = (int) (p2 * N);
|
||||
if (index_found != 0) {
|
||||
sample_index = (int)(p2 * N);
|
||||
results[i] = dists[index_counter][sample_index];
|
||||
}
|
||||
else printf("This shouldn't be able to happen.\n");
|
||||
} else
|
||||
printf("This shouldn't be able to happen.\n");
|
||||
}
|
||||
}
|
||||
free(normalized_weights);
|
||||
free(cummulative_weights);
|
||||
}
|
||||
|
||||
void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads) {
|
||||
void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads)
|
||||
{
|
||||
float sum_weights = array_sum(weights, n_dists);
|
||||
float* normalized_weights = malloc(n_dists * sizeof(float));
|
||||
for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;}
|
||||
|
||||
for (int i = 0; i < n_dists; i++) {
|
||||
normalized_weights[i] = weights[i] / sum_weights;
|
||||
}
|
||||
|
||||
float* cummulative_weights = malloc(n_dists * sizeof(float));
|
||||
array_cumsum(normalized_weights, cummulative_weights, n_dists);
|
||||
|
||||
|
@ -153,19 +161,15 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r
|
|||
float p1;
|
||||
int sample_index, i, own_length;
|
||||
|
||||
#pragma omp parallel private (i, p1, sample_index, own_length)
|
||||
#pragma omp parallel private(i, p1, sample_index, own_length)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < n_threads; i++)
|
||||
{
|
||||
#pragma omp for
|
||||
for (i = 0; i < n_threads; i++) {
|
||||
own_length = split_array_get_my_length(i, N, n_threads);
|
||||
for (int j = 0; j < own_length; j++)
|
||||
{
|
||||
for (int j = 0; j < own_length; j++) {
|
||||
p1 = random_uniform(0, 1);
|
||||
for (int k = 0; k < n_dists; k++)
|
||||
{
|
||||
if (p1 < cummulative_weights[k])
|
||||
{
|
||||
for (int k = 0; k < n_dists; k++) {
|
||||
if (p1 < cummulative_weights[k]) {
|
||||
results[i][j] = samplers[k]();
|
||||
break;
|
||||
}
|
||||
|
@ -177,65 +181,67 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r
|
|||
free(cummulative_weights);
|
||||
}
|
||||
|
||||
float sample_0() {
|
||||
float sample_0()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
float sample_1() {
|
||||
float sample_1()
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
float sample_few() {
|
||||
float sample_few()
|
||||
{
|
||||
return random_to(1, 3);
|
||||
}
|
||||
|
||||
float sample_many() {
|
||||
float sample_many()
|
||||
{
|
||||
return random_to(2, 10);
|
||||
}
|
||||
|
||||
void split_array_allocate(float** meta_array, int length, int divide_into) {
|
||||
void split_array_allocate(float** meta_array, int length, int divide_into)
|
||||
{
|
||||
int own_length;
|
||||
|
||||
for (int i = 0; i < divide_into; i++)
|
||||
{
|
||||
for (int i = 0; i < divide_into; i++) {
|
||||
own_length = split_array_get_my_length(i, length, divide_into);
|
||||
meta_array[i] = malloc(own_length*sizeof(float));
|
||||
meta_array[i] = malloc(own_length * sizeof(float));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void split_array_free(float** meta_array, int divided_into) {
|
||||
for (int i = 0; i < divided_into; i++)
|
||||
{
|
||||
void split_array_free(float** meta_array, int divided_into)
|
||||
{
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
free(meta_array[i]);
|
||||
}
|
||||
free(meta_array);
|
||||
}
|
||||
|
||||
float split_array_sum(float** meta_array, int length, int divided_into) {
|
||||
float split_array_sum(float** meta_array, int length, int divided_into)
|
||||
{
|
||||
int i;
|
||||
float output;
|
||||
float* partial_sum = malloc(divided_into*sizeof(float));
|
||||
float* partial_sum = malloc(divided_into * sizeof(float));
|
||||
|
||||
#pragma omp private(i) shared(partial_sum)
|
||||
for (int i = 0; i < divided_into; i++)
|
||||
{
|
||||
#pragma omp private(i) shared(partial_sum)
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
float own_partial_sum = 0;
|
||||
int own_length = split_array_get_my_length(i, length, divided_into);
|
||||
for (int j = 0; j < own_length; j++)
|
||||
{
|
||||
for (int j = 0; j < own_length; j++) {
|
||||
own_partial_sum += meta_array[i][j];
|
||||
}
|
||||
partial_sum[i] = own_partial_sum;
|
||||
}
|
||||
for (int i = 0; i < divided_into; i++)
|
||||
{
|
||||
for (int i = 0; i < divided_into; i++) {
|
||||
output += partial_sum[i];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
int main() {
|
||||
int main()
|
||||
{
|
||||
clock_t start, end;
|
||||
start = clock();
|
||||
//initialize randomness
|
||||
|
@ -244,7 +250,7 @@ int main() {
|
|||
// Declare variables in play
|
||||
float p_a, p_b, p_c;
|
||||
int n_threads = omp_get_max_threads();
|
||||
float** dist_mixture = malloc(n_threads*sizeof(float*));
|
||||
float** dist_mixture = malloc(n_threads * sizeof(float*));
|
||||
split_array_allocate(dist_mixture, N, n_threads);
|
||||
|
||||
// Initialize variables
|
||||
|
@ -255,7 +261,7 @@ int main() {
|
|||
// Generate mixture
|
||||
int n_dists = 4;
|
||||
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
|
||||
float (*samplers[])(void) = {sample_0, sample_1, sample_few, sample_many};
|
||||
float (*samplers[])(void) = { sample_0, sample_1, sample_few, sample_many };
|
||||
|
||||
mixture_f(samplers, weights, n_dists, dist_mixture, n_threads);
|
||||
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
|
||||
|
@ -263,6 +269,6 @@ int main() {
|
|||
end = clock();
|
||||
split_array_free(dist_mixture, n_threads);
|
||||
|
||||
printf("Total time (ms): %f\n", ((double) (end-start)) / CLOCKS_PER_SEC * 1000);
|
||||
printf("Total time (ms): %f\n", ((double)(end - start)) / CLOCKS_PER_SEC * 1000);
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user