diff --git a/C-optimized/samples.c b/C-optimized/samples.c index 931c4320..2b2ae901 100644 --- a/C-optimized/samples.c +++ b/C-optimized/samples.c @@ -1,8 +1,8 @@ #include +#include +#include #include #include -#include -#include const float PI = 3.14159265358979323846; @@ -10,67 +10,73 @@ const float PI = 3.14159265358979323846; //Array helpers -void array_print(float* array, int length) { - for (int i = 0; i < length; i++) - { +void array_print(float* array, int length) +{ + for (int i = 0; i < length; i++) { printf("item[%d] = %f\n", i, array[i]); } printf("\n"); } -void array_fill(float* array, int length, float item) { +void array_fill(float* array, int length, float item) +{ int i; - #pragma omp private (i) +#pragma omp private(i) { - #pragma omp for - for (i = 0; i < length; i++) - { +#pragma omp for + for (i = 0; i < length; i++) { array[i] = item; } - } + } } -float array_sum(float* array, int length) { +float array_sum(float* array, int length) +{ float output = 0.0; - for (int i = 0; i < length; i++) - { + for (int i = 0; i < length; i++) { output += array[i]; } return output; } -void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) { +void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) +{ array_cumsummed[0] = array_to_sum[0]; - for (int i = 1; i < length; i++) - { - array_cumsummed[i] = array_cumsummed[i-1] + array_to_sum[i]; + for (int i = 1; i < length; i++) { + array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i]; } } - -float rand_float(float to) { - return ((float)rand()/(float)RAND_MAX) * to; + +float rand_float(float to) +{ + return ((float)rand() / (float)RAND_MAX) * to; } -float ur_normal() { +float ur_normal() +{ float u1 = rand_float(1.0); float u2 = rand_float(1.0); float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2); return z; } -inline float random_uniform(float from, float to) { - return ((float)rand()/(float)RAND_MAX)*(to-from)+from; +inline float random_uniform(float from, float to) +{ + return ((float)rand() / (float)RAND_MAX) * (to - from) + from; } -inline float random_normal(float mean, float sigma) { +inline float random_normal(float mean, float sigma) +{ return (mean + sigma * ur_normal()); } -inline float random_lognormal(float logmean, float logsigma) { +inline float random_lognormal(float logmean, float logsigma) +{ return expf(random_normal(logmean, logsigma)); } -inline float random_to(float low, float high) { +inline float random_to(float low, float high) +{ const float NORMAL95CONFIDENCE = 1.6448536269514722; float loglow = logf(low); float loghigh = logf(high); @@ -79,28 +85,32 @@ inline float random_to(float low, float high) { return random_lognormal(logmean, logsigma); } -void array_random_to(float* array, int length, float low, float high) { +void array_random_to(float* array, int length, float low, float high) +{ int i; - #pragma omp private(i) +#pragma omp private(i) { - #pragma omp for - for (i = 0; i < length; i++) - { +#pragma omp for + for (i = 0; i < length; i++) { array[i] = random_to(low, high); } } } -int split_array_get_my_length(int index, int total_length, int n_threads) { - return (total_length%n_threads > index ? total_length/n_threads+1 : total_length/n_threads); +int split_array_get_my_length(int index, int total_length, int n_threads) +{ + return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads); } //Old version, don't use it!! Optimized version is called mixture_f. This one is just for display -void mixture(float* dists[], float* weights, int n_dists, float* results) { +void mixture(float* dists[], float* weights, int n_dists, float* results) +{ float sum_weights = array_sum(weights, n_dists); float* normalized_weights = malloc(n_dists * sizeof(float)); - for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;} - + for (int i = 0; i < n_dists; i++) { + normalized_weights[i] = weights[i] / sum_weights; + } + float* cummulative_weights = malloc(n_dists * sizeof(float)); array_cumsum(normalized_weights, cummulative_weights, n_dists); @@ -108,44 +118,42 @@ void mixture(float* dists[], float* weights, int n_dists, float* results) { float p1, p2; int index_found, index_counter, sample_index, i; - #pragma omp parallel private (i, p1, p2, index_found, index_counter, sample_index) +#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index) { - #pragma omp for - for (i = 0; i < N; i++) - { +#pragma omp for + for (i = 0; i < N; i++) { p1 = random_uniform(0, 1); p2 = random_uniform(0, 1); index_found = 0; index_counter = 0; - while ((index_found == 0) && (index_counter < n_dists)) - { - if (p1 < cummulative_weights[index_counter]) - { + while ((index_found == 0) && (index_counter < n_dists)) { + if (p1 < cummulative_weights[index_counter]) { index_found = 1; - } else - { + } else { index_counter++; } } - if (index_found != 0) - { - sample_index = (int) (p2 * N); + if (index_found != 0) { + sample_index = (int)(p2 * N); results[i] = dists[index_counter][sample_index]; - } - else printf("This shouldn't be able to happen.\n"); + } else + printf("This shouldn't be able to happen.\n"); } } free(normalized_weights); free(cummulative_weights); } -void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads) { +void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads) +{ float sum_weights = array_sum(weights, n_dists); float* normalized_weights = malloc(n_dists * sizeof(float)); - for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;} - + for (int i = 0; i < n_dists; i++) { + normalized_weights[i] = weights[i] / sum_weights; + } + float* cummulative_weights = malloc(n_dists * sizeof(float)); array_cumsum(normalized_weights, cummulative_weights, n_dists); @@ -153,19 +161,15 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r float p1; int sample_index, i, own_length; - #pragma omp parallel private (i, p1, sample_index, own_length) +#pragma omp parallel private(i, p1, sample_index, own_length) { - #pragma omp for - for (i = 0; i < n_threads; i++) - { +#pragma omp for + for (i = 0; i < n_threads; i++) { own_length = split_array_get_my_length(i, N, n_threads); - for (int j = 0; j < own_length; j++) - { + for (int j = 0; j < own_length; j++) { p1 = random_uniform(0, 1); - for (int k = 0; k < n_dists; k++) - { - if (p1 < cummulative_weights[k]) - { + for (int k = 0; k < n_dists; k++) { + if (p1 < cummulative_weights[k]) { results[i][j] = samplers[k](); break; } @@ -177,65 +181,67 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r free(cummulative_weights); } -float sample_0() { +float sample_0() +{ return 0; } -float sample_1() { +float sample_1() +{ return 1; } -float sample_few() { +float sample_few() +{ return random_to(1, 3); } -float sample_many() { +float sample_many() +{ return random_to(2, 10); } -void split_array_allocate(float** meta_array, int length, int divide_into) { +void split_array_allocate(float** meta_array, int length, int divide_into) +{ int own_length; - for (int i = 0; i < divide_into; i++) - { + for (int i = 0; i < divide_into; i++) { own_length = split_array_get_my_length(i, length, divide_into); - meta_array[i] = malloc(own_length*sizeof(float)); + meta_array[i] = malloc(own_length * sizeof(float)); } - } -void split_array_free(float** meta_array, int divided_into) { - for (int i = 0; i < divided_into; i++) - { +void split_array_free(float** meta_array, int divided_into) +{ + for (int i = 0; i < divided_into; i++) { free(meta_array[i]); } free(meta_array); } -float split_array_sum(float** meta_array, int length, int divided_into) { +float split_array_sum(float** meta_array, int length, int divided_into) +{ int i; float output; - float* partial_sum = malloc(divided_into*sizeof(float)); + float* partial_sum = malloc(divided_into * sizeof(float)); - #pragma omp private(i) shared(partial_sum) - for (int i = 0; i < divided_into; i++) - { +#pragma omp private(i) shared(partial_sum) + for (int i = 0; i < divided_into; i++) { float own_partial_sum = 0; int own_length = split_array_get_my_length(i, length, divided_into); - for (int j = 0; j < own_length; j++) - { + for (int j = 0; j < own_length; j++) { own_partial_sum += meta_array[i][j]; } partial_sum[i] = own_partial_sum; } - for (int i = 0; i < divided_into; i++) - { + for (int i = 0; i < divided_into; i++) { output += partial_sum[i]; } return output; } -int main() { +int main() +{ clock_t start, end; start = clock(); //initialize randomness @@ -244,7 +250,7 @@ int main() { // Declare variables in play float p_a, p_b, p_c; int n_threads = omp_get_max_threads(); - float** dist_mixture = malloc(n_threads*sizeof(float*)); + float** dist_mixture = malloc(n_threads * sizeof(float*)); split_array_allocate(dist_mixture, N, n_threads); // Initialize variables @@ -255,7 +261,7 @@ int main() { // Generate mixture int n_dists = 4; float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 }; - float (*samplers[])(void) = {sample_0, sample_1, sample_few, sample_many}; + float (*samplers[])(void) = { sample_0, sample_1, sample_few, sample_many }; mixture_f(samplers, weights, n_dists, dist_mixture, n_threads); printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N); @@ -263,6 +269,6 @@ int main() { end = clock(); split_array_free(dist_mixture, n_threads); - printf("Total time (ms): %f\n", ((double) (end-start)) / CLOCKS_PER_SEC * 1000); + printf("Total time (ms): %f\n", ((double)(end - start)) / CLOCKS_PER_SEC * 1000); return 0; }