161 lines
5.5 KiB
Markdown
161 lines
5.5 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrmcovariance
|
||
|
|
||
|
> Compute a moving [unbiased sample covariance][covariance] incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
For unknown population means, the [unbiased sample covariance][covariance] for a window `n` of size `W` is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_unknown_means" align="center" raw="\operatorname{cov_n} = \frac{1}{n-1} \sum_{i=j}^{j+W-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n)" alt="Equation for the unbiased sample covariance for unknown population means."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{cov_n} = \frac{1}{n-1} \sum_{i=j}^{j+W-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n)" data-equation="eq:unbiased_sample_covariance_unknown_means">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mcovariance/docs/img/equation_unbiased_sample_covariance_unknown_means.svg" alt="Equation for the unbiased sample covariance for unknown population means.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `j` specifies the index of the value at which the window begins. For example, for a trailing (i.e., non-centered) window using zero-based indexing and `j` greater than or equal to `W`, `j` is the `n-W`th value with `n` being the number of values thus analyzed.
|
||
|
|
||
|
For known population means, the [unbiased sample covariance][covariance] for a window `n` of size `W` is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_known_means" align="center" raw="\operatorname{cov_n} = \frac{1}{n} \sum_{i=j}^{j+W-1} (x_i - \mu_x)(y_i - \mu_y)" alt="Equation for the unbiased sample covariance for known population means."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{cov_n} = \frac{1}{n} \sum_{i=j}^{j+W-1} (x_i - \mu_x)(y_i - \mu_y)" data-equation="eq:unbiased_sample_covariance_known_means">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@27e2a43c70db648bb5bbc3fd0cdee050c25adc0b/lib/node_modules/@stdlib/stats/incr/mcovariance/docs/img/equation_unbiased_sample_covariance_known_means.svg" alt="Equation for the unbiased sample covariance for known population means.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' );
|
||
|
```
|
||
|
|
||
|
#### incrmcovariance( window\[, mx, my] )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes a moving [unbiased sample covariance][covariance]. The `window` parameter defines the number of values over which to compute the moving [unbiased sample covariance][covariance].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmcovariance( 3 );
|
||
|
```
|
||
|
|
||
|
If means are already known, provide `mx` and `my` arguments.
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmcovariance( 3, 5.0, -3.14 );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[x, y] )
|
||
|
|
||
|
If provided input values `x` and `y`, the accumulator function returns an updated [unbiased sample covariance][covariance]. If not provided input values `x` and `y`, the accumulator function returns the current [unbiased sample covariance][covariance].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmcovariance( 3 );
|
||
|
|
||
|
var v = accumulator();
|
||
|
// returns null
|
||
|
|
||
|
// Fill the window...
|
||
|
v = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)]
|
||
|
// returns 0.0
|
||
|
|
||
|
v = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)]
|
||
|
// returns ~-7.49
|
||
|
|
||
|
v = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)]
|
||
|
// returns -8.35
|
||
|
|
||
|
// Window begins sliding...
|
||
|
v = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)]
|
||
|
// returns -29.42
|
||
|
|
||
|
v = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)]
|
||
|
// returns -24.5
|
||
|
|
||
|
v = accumulator();
|
||
|
// returns -24.5
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
- As `W` (x,y) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' );
|
||
|
|
||
|
var accumulator;
|
||
|
var x;
|
||
|
var y;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator:
|
||
|
accumulator = incrmcovariance( 5 );
|
||
|
|
||
|
// For each simulated datum, update the moving unbiased sample covariance...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
x = randu() * 100.0;
|
||
|
y = randu() * 100.0;
|
||
|
accumulator( x, y );
|
||
|
}
|
||
|
console.log( accumulator() );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[covariance]: https://en.wikipedia.org/wiki/Covariance
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|