# incrmcovariance > Compute a moving [unbiased sample covariance][covariance] incrementally.
For unknown population means, the [unbiased sample covariance][covariance] for a window `n` of size `W` is defined as
Equation for the unbiased sample covariance for unknown population means.
where `j` specifies the index of the value at which the window begins. For example, for a trailing (i.e., non-centered) window using zero-based indexing and `j` greater than or equal to `W`, `j` is the `n-W`th value with `n` being the number of values thus analyzed. For known population means, the [unbiased sample covariance][covariance] for a window `n` of size `W` is defined as
Equation for the unbiased sample covariance for known population means.
## Usage ```javascript var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' ); ``` #### incrmcovariance( window\[, mx, my] ) Returns an accumulator `function` which incrementally computes a moving [unbiased sample covariance][covariance]. The `window` parameter defines the number of values over which to compute the moving [unbiased sample covariance][covariance]. ```javascript var accumulator = incrmcovariance( 3 ); ``` If means are already known, provide `mx` and `my` arguments. ```javascript var accumulator = incrmcovariance( 3, 5.0, -3.14 ); ``` #### accumulator( \[x, y] ) If provided input values `x` and `y`, the accumulator function returns an updated [unbiased sample covariance][covariance]. If not provided input values `x` and `y`, the accumulator function returns the current [unbiased sample covariance][covariance]. ```javascript var accumulator = incrmcovariance( 3 ); var v = accumulator(); // returns null // Fill the window... v = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)] // returns 0.0 v = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)] // returns ~-7.49 v = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)] // returns -8.35 // Window begins sliding... v = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)] // returns -29.42 v = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)] // returns -24.5 v = accumulator(); // returns -24.5 ```
## Notes - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. - As `W` (x,y) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var incrmcovariance = require( '@stdlib/stats/incr/mcovariance' ); var accumulator; var x; var y; var i; // Initialize an accumulator: accumulator = incrmcovariance( 5 ); // For each simulated datum, update the moving unbiased sample covariance... for ( i = 0; i < 100; i++ ) { x = randu() * 100.0; y = randu() * 100.0; accumulator( x, y ); } console.log( accumulator() ); ```