58 lines
1.7 KiB
Plaintext
58 lines
1.7 KiB
Plaintext
|
|
||
|
{{alias}}( x, y[, options] )
|
||
|
Locally-weighted polynomial regression via the LOWESS algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: Array<number>
|
||
|
x-axis values (abscissa values).
|
||
|
|
||
|
y: Array<number>
|
||
|
Corresponding y-axis values (ordinate values).
|
||
|
|
||
|
options: Object (optional)
|
||
|
Function options.
|
||
|
|
||
|
options.f: number (optional)
|
||
|
Positive number specifying the smoothing span, i.e., the proportion of
|
||
|
points which influence smoothing at each value. Larger values
|
||
|
correspond to more smoothing. Default: `2/3`.
|
||
|
|
||
|
options.nsteps: number (optional)
|
||
|
Number of iterations in the robust fit (fewer iterations translates to
|
||
|
faster function execution). If set to zero, the nonrobust fit is
|
||
|
returned. Default: `3`.
|
||
|
|
||
|
options.delta: number (optional)
|
||
|
Nonnegative number which may be used to reduce the number of
|
||
|
computations. Default: 1/100th of the range of `x`.
|
||
|
|
||
|
options.sorted: boolean (optional)
|
||
|
Boolean indicating if the input array `x` is sorted. Default: `false`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: Object
|
||
|
Object with ordered x-values and fitted values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
> var x = new {{alias:@stdlib/array/float64}}( 100 );
|
||
|
> var y = new {{alias:@stdlib/array/float64}}( x.length );
|
||
|
> for ( var i = 0; i < x.length; i++ ) {
|
||
|
... x[ i ] = i;
|
||
|
... y[ i ] = ( 0.5*i ) + ( 10.0*{{alias:@stdlib/random/base/randn}}() );
|
||
|
... }
|
||
|
> var out = {{alias}}( x, y );
|
||
|
> var yhat = out.y;
|
||
|
|
||
|
> var h = {{alias:@stdlib/plot/ctor}}( [ x, x ], [ y, yhat ] );
|
||
|
> h.lineStyle = [ 'none', '-' ];
|
||
|
> h.symbols = [ 'closed-circle', 'none' ];
|
||
|
|
||
|
> h.view( 'window' );
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
|