{{alias}}( x, y[, options] ) Locally-weighted polynomial regression via the LOWESS algorithm. Parameters ---------- x: Array x-axis values (abscissa values). y: Array Corresponding y-axis values (ordinate values). options: Object (optional) Function options. options.f: number (optional) Positive number specifying the smoothing span, i.e., the proportion of points which influence smoothing at each value. Larger values correspond to more smoothing. Default: `2/3`. options.nsteps: number (optional) Number of iterations in the robust fit (fewer iterations translates to faster function execution). If set to zero, the nonrobust fit is returned. Default: `3`. options.delta: number (optional) Nonnegative number which may be used to reduce the number of computations. Default: 1/100th of the range of `x`. options.sorted: boolean (optional) Boolean indicating if the input array `x` is sorted. Default: `false`. Returns ------- out: Object Object with ordered x-values and fitted values. Examples -------- > var x = new {{alias:@stdlib/array/float64}}( 100 ); > var y = new {{alias:@stdlib/array/float64}}( x.length ); > for ( var i = 0; i < x.length; i++ ) { ... x[ i ] = i; ... y[ i ] = ( 0.5*i ) + ( 10.0*{{alias:@stdlib/random/base/randn}}() ); ... } > var out = {{alias}}( x, y ); > var yhat = out.y; > var h = {{alias:@stdlib/plot/ctor}}( [ x, x ], [ y, yhat ] ); > h.lineStyle = [ 'none', '-' ]; > h.symbols = [ 'closed-circle', 'none' ]; > h.view( 'window' ); See Also --------