132 lines
3.5 KiB
Markdown
132 lines
3.5 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrme
|
||
|
|
||
|
> Compute the [mean error][mean-absolute-error] (ME) incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [mean error][mean-absolute-error] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:mean_error" align="center" raw="\operatorname{ME} = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i)" alt="Equation for the mean error."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{ME} = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i)" data-equation="eq:mean_error">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7d6e6319f451be0997d35a6cf491b08e1f2cb5cf/lib/node_modules/@stdlib/stats/incr/me/docs/img/equation_mean_error.svg" alt="Equation for the mean error.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrme = require( '@stdlib/stats/incr/me' );
|
||
|
```
|
||
|
|
||
|
#### incrme()
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes the [mean error][mean-absolute-error].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrme();
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[x, y] )
|
||
|
|
||
|
If provided input values `x` and `y`, the accumulator function returns an updated [mean error][mean-absolute-error]. If not provided input values `x` and `y`, the accumulator function returns the current [mean error][mean-absolute-error].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrme();
|
||
|
|
||
|
var m = accumulator( 2.0, 3.0 );
|
||
|
// returns 1.0
|
||
|
|
||
|
m = accumulator( -1.0, -4.0 );
|
||
|
// returns -1.0
|
||
|
|
||
|
m = accumulator( -3.0, 5.0 );
|
||
|
// returns 2.0
|
||
|
|
||
|
m = accumulator();
|
||
|
// returns 2.0
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
- Be careful when interpreting the [mean error][mean-absolute-error] as errors can cancel. This stated, that errors can cancel makes the [mean error][mean-absolute-error] suitable for measuring the bias in forecasts.
|
||
|
- **Warning**: the [mean error][mean-absolute-error] is scale-dependent and, thus, the measure should **not** be used to make comparisons between datasets having different scales.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var incrme = require( '@stdlib/stats/incr/me' );
|
||
|
|
||
|
var accumulator;
|
||
|
var v1;
|
||
|
var v2;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator:
|
||
|
accumulator = incrme();
|
||
|
|
||
|
// For each simulated datum, update the mean error...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v1 = ( randu()*100.0 ) - 50.0;
|
||
|
v2 = ( randu()*100.0 ) - 50.0;
|
||
|
accumulator( v1, v2 );
|
||
|
}
|
||
|
console.log( accumulator() );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[mean-absolute-error]: https://en.wikipedia.org/wiki/Mean_absolute_error
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|