|
||
---|---|---|
.. | ||
docs | ||
lib | ||
package.json | ||
README.md |
incrme
Compute the mean error (ME) incrementally.
The mean error is defined as
Usage
var incrme = require( '@stdlib/stats/incr/me' );
incrme()
Returns an accumulator function
which incrementally computes the mean error.
var accumulator = incrme();
accumulator( [x, y] )
If provided input values x
and y
, the accumulator function returns an updated mean error. If not provided input values x
and y
, the accumulator function returns the current mean error.
var accumulator = incrme();
var m = accumulator( 2.0, 3.0 );
// returns 1.0
m = accumulator( -1.0, -4.0 );
// returns -1.0
m = accumulator( -3.0, 5.0 );
// returns 2.0
m = accumulator();
// returns 2.0
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function. - Be careful when interpreting the mean error as errors can cancel. This stated, that errors can cancel makes the mean error suitable for measuring the bias in forecasts.
- Warning: the mean error is scale-dependent and, thus, the measure should not be used to make comparisons between datasets having different scales.
Examples
var randu = require( '@stdlib/random/base/randu' );
var incrme = require( '@stdlib/stats/incr/me' );
var accumulator;
var v1;
var v2;
var i;
// Initialize an accumulator:
accumulator = incrme();
// For each simulated datum, update the mean error...
for ( i = 0; i < 100; i++ ) {
v1 = ( randu()*100.0 ) - 50.0;
v2 = ( randu()*100.0 ) - 50.0;
accumulator( v1, v2 );
}
console.log( accumulator() );