146 lines
4.6 KiB
Markdown
146 lines
4.6 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrmmpe
|
||
|
|
||
|
> Compute a moving [mean percentage error][mean-percentage-error] (MPE) incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
For a window of size `W`, the [mean percentage error][mean-percentage-error] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:mean_percentage_error" align="center" raw="\operatorname{MPE} = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" alt="Equation for the mean percentage error."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{MPE} = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" data-equation="eq:mean_percentage_error">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d97022bce00ceb9db681cb6cc8fb6c87ad86287f/lib/node_modules/@stdlib/stats/incr/mmpe/docs/img/equation_mean_percentage_error.svg" alt="Equation for the mean percentage error.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `f_i` is the forecast value and `a_i` is the actual value.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
|
||
|
```
|
||
|
|
||
|
#### incrmmpe( window )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes a moving [mean percentage error][mean-percentage-error]. The `window` parameter defines the number of values over which to compute the moving [mean percentage error][mean-percentage-error].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmmpe( 3 );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[f, a] )
|
||
|
|
||
|
If provided input values `f` and `a`, the accumulator function returns an updated [mean percentage error][mean-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean percentage error][mean-percentage-error].
|
||
|
|
||
|
```javascript
|
||
|
var accumulator = incrmmpe( 3 );
|
||
|
|
||
|
var m = accumulator();
|
||
|
// returns null
|
||
|
|
||
|
// Fill the window...
|
||
|
m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)]
|
||
|
// returns ~33.33
|
||
|
|
||
|
m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)]
|
||
|
// returns ~54.17
|
||
|
|
||
|
m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)]
|
||
|
// returns ~58.33
|
||
|
|
||
|
// Window begins sliding...
|
||
|
m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)]
|
||
|
// returns ~2.78
|
||
|
|
||
|
m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)]
|
||
|
// returns ~-44.44
|
||
|
|
||
|
m = accumulator();
|
||
|
// returns ~-44.44
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
|
||
|
- As `W` (f,a) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
|
||
|
- Be careful when interpreting the [mean percentage error][mean-percentage-error] as errors can cancel. This stated, that errors can cancel makes the [mean percentage error][mean-percentage-error] suitable for measuring the bias in forecasts.
|
||
|
- **Warning**: the [mean percentage error][mean-percentage-error] is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold).
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
|
||
|
|
||
|
var accumulator;
|
||
|
var v1;
|
||
|
var v2;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator:
|
||
|
accumulator = incrmmpe( 5 );
|
||
|
|
||
|
// For each simulated datum, update the moving mean percentage error...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v1 = ( randu()*100.0 ) + 50.0;
|
||
|
v2 = ( randu()*100.0 ) + 50.0;
|
||
|
accumulator( v1, v2 );
|
||
|
}
|
||
|
console.log( accumulator() );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[mean-percentage-error]: https://en.wikipedia.org/wiki/Mean_percentage_error
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|