# incrmmpe > Compute a moving [mean percentage error][mean-percentage-error] (MPE) incrementally.
For a window of size `W`, the [mean percentage error][mean-percentage-error] is defined as
Equation for the mean percentage error.
where `f_i` is the forecast value and `a_i` is the actual value.
## Usage ```javascript var incrmmpe = require( '@stdlib/stats/incr/mmpe' ); ``` #### incrmmpe( window ) Returns an accumulator `function` which incrementally computes a moving [mean percentage error][mean-percentage-error]. The `window` parameter defines the number of values over which to compute the moving [mean percentage error][mean-percentage-error]. ```javascript var accumulator = incrmmpe( 3 ); ``` #### accumulator( \[f, a] ) If provided input values `f` and `a`, the accumulator function returns an updated [mean percentage error][mean-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean percentage error][mean-percentage-error]. ```javascript var accumulator = incrmmpe( 3 ); var m = accumulator(); // returns null // Fill the window... m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)] // returns ~33.33 m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)] // returns ~54.17 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)] // returns ~58.33 // Window begins sliding... m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)] // returns ~2.78 m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)] // returns ~-44.44 m = accumulator(); // returns ~-44.44 ```
## Notes - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. - As `W` (f,a) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. - Be careful when interpreting the [mean percentage error][mean-percentage-error] as errors can cancel. This stated, that errors can cancel makes the [mean percentage error][mean-percentage-error] suitable for measuring the bias in forecasts. - **Warning**: the [mean percentage error][mean-percentage-error] is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold).
## Examples ```javascript var randu = require( '@stdlib/random/base/randu' ); var incrmmpe = require( '@stdlib/stats/incr/mmpe' ); var accumulator; var v1; var v2; var i; // Initialize an accumulator: accumulator = incrmmpe( 5 ); // For each simulated datum, update the moving mean percentage error... for ( i = 0; i < 100; i++ ) { v1 = ( randu()*100.0 ) + 50.0; v2 = ( randu()*100.0 ) + 50.0; accumulator( v1, v2 ); } console.log( accumulator() ); ```