2023-11-02 23:34:48 +00:00
|
|
|
scale = 16
|
2023-11-02 22:29:56 +00:00
|
|
|
/* seed = 12345678910 */
|
|
|
|
pi = 4 * atan(1)
|
2023-11-02 23:34:48 +00:00
|
|
|
normal90confidence=1.64485362695
|
|
|
|
/* 1.6448536269514727148638489079916 */
|
2023-11-02 22:29:56 +00:00
|
|
|
|
|
|
|
/* Distribution & sampling functions */
|
|
|
|
/* Unit distributions */
|
|
|
|
define sample_unit_uniform(){
|
|
|
|
return rand()/maxrand()
|
|
|
|
}
|
|
|
|
define sample_unit_normal(){
|
|
|
|
u1=sample_unit_uniform()
|
|
|
|
u2=sample_unit_uniform()
|
2023-11-02 23:26:06 +00:00
|
|
|
z = sqrt(-2 * l(u1)) * sin(2 * pi * u2)
|
2023-11-02 22:29:56 +00:00
|
|
|
return z
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Composite distributions */
|
|
|
|
define sample_uniform(min, max){
|
|
|
|
return (min + sample_unit_uniform()*(max-min))
|
|
|
|
}
|
|
|
|
define sample_normal(mean, sigma){
|
|
|
|
return (mean + sigma * sample_unit_normal())
|
|
|
|
}
|
|
|
|
define sample_lognormal(logmean, logstd){
|
|
|
|
return e(sample_normal(logmean, logstd))
|
|
|
|
}
|
|
|
|
define sample_normal_from_90_confidence_interval(low, high){
|
|
|
|
/*
|
|
|
|
Explanation of key idea:
|
|
|
|
1. We know that the 90% confidence interval of the unit normal is
|
|
|
|
[-1.6448536269514722, 1.6448536269514722]
|
|
|
|
see e.g.: https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p
|
|
|
|
or https://www.wolframalpha.com/input?i=N%5BInverseCDF%28normal%280%2C1%29%2C+0.05%29%2C%7B%E2%88%9E%2C100%7D%5D
|
|
|
|
2. So if we take a unit normal and multiply it by
|
|
|
|
L / 1.6448536269514722, its new 90% confidence interval will be
|
|
|
|
[-L, L], i.e., length 2 * L
|
|
|
|
3. Instead, if we want to get a confidence interval of length L,
|
|
|
|
we should multiply the unit normal by
|
|
|
|
L / (2 * 1.6448536269514722)
|
|
|
|
Meaning that its standard deviation should be multiplied by that amount
|
|
|
|
see: https://en.wikipedia.org/wiki/Normal_distribution?lang=en#Operations_on_a_single_normal_variable
|
|
|
|
4. So we have learnt that Normal(0, L / (2 * 1.6448536269514722))
|
|
|
|
has a 90% confidence interval of length L
|
|
|
|
5. If we want a 90% confidence interval from high to low,
|
|
|
|
we can set mean = (high + low)/2; the midpoint, and L = high-low,
|
|
|
|
Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
|
|
|
|
*/
|
2023-11-02 23:34:48 +00:00
|
|
|
mean = (high + low) / 2
|
|
|
|
std = (high - low) / (2 * normal90confidence)
|
2023-11-02 22:29:56 +00:00
|
|
|
return sample_normal(mean, std)
|
|
|
|
}
|
|
|
|
define sample_to(low, high){
|
|
|
|
|
|
|
|
/*
|
|
|
|
Given a (positive) 90% confidence interval,
|
|
|
|
returns a sample from a lognorma with a matching 90% c.i.
|
|
|
|
Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
|
|
|
we need but get a normal with 90% confidence interval [log(a), log(b)].
|
|
|
|
Then see code for sample_normal_from_90_confidence_interval
|
|
|
|
*/
|
2023-11-02 23:26:06 +00:00
|
|
|
loglow = l(low)
|
|
|
|
loghigh = l(high)
|
2023-11-02 22:29:56 +00:00
|
|
|
return e(sample_normal_from_90_confidence_interval(loglow, loghigh))
|
|
|
|
}
|
2023-11-02 23:34:48 +00:00
|
|
|
|