add squiggle.bc
This commit is contained in:
parent
b9f64ec37b
commit
1a3099b7e4
44
bc/notes.md
Normal file
44
bc/notes.md
Normal file
|
@ -0,0 +1,44 @@
|
|||
## bc versions
|
||||
https://git.gavinhoward.com/gavin/bc/src/branch/master
|
||||
https://www.gnu.org/software/bc/manual/html_mono/bc.html
|
||||
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/utilities/bc.html
|
||||
|
||||
## gh-bc
|
||||
|
||||
To build
|
||||
./configure
|
||||
make
|
||||
sudo cp bin/bc /usr/bin/ghbc
|
||||
|
||||
Man, just feels nicer.
|
||||
rand()
|
||||
maxrand()
|
||||
|
||||
ghbc -l: include math functions, like log, sin
|
||||
|
||||
## gnu bc
|
||||
|
||||
--standard: Process exactly the POSIX bc language.
|
||||
Could define my own rng, and use arrays to do the seed thing
|
||||
|
||||
## Usage
|
||||
|
||||
Numbers are arbitrary precision numbers
|
||||
|
||||
length ( expression )
|
||||
scale (expression)
|
||||
scale=100
|
||||
define t(x) {
|
||||
return(2);
|
||||
}
|
||||
|
||||
Apparently posix bc only has one-letter functions, lol
|
||||
Extensions needed: multi-letter functions
|
||||
|
||||
## Decisions, decisions
|
||||
|
||||
Maybe target gh-bc, and then see about making it POSIX complicant later?
|
||||
|
||||
Decide between GH's bc, POSIX bc, and gnu bc
|
||||
- Start with POSIX for now
|
||||
- Can't do POSIX, one letter functions are too annoying
|
7
bc/scratchpad.bc
Normal file
7
bc/scratchpad.bc
Normal file
|
@ -0,0 +1,7 @@
|
|||
define factorial(x){
|
||||
if(x > 1){
|
||||
return x * factorial(x-1)
|
||||
} else {
|
||||
return 1
|
||||
}
|
||||
}
|
124
bc/squiggle.bc
Normal file
124
bc/squiggle.bc
Normal file
|
@ -0,0 +1,124 @@
|
|||
scale = 32
|
||||
/* seed = 12345678910 */
|
||||
pi = 4 * atan(1)
|
||||
normal90confidence=1.6448536269514727148638489079916
|
||||
|
||||
/* Distribution & sampling functions */
|
||||
/* Unit distributions */
|
||||
|
||||
define sample_unit_uniform(){
|
||||
return rand()/maxrand()
|
||||
}
|
||||
|
||||
define sample_unit_normal(){
|
||||
u1=sample_unit_uniform()
|
||||
u2=sample_unit_uniform()
|
||||
z = sqrt(-2 * log(u1, 2)) * sin(2 * pi * u2)
|
||||
return z
|
||||
}
|
||||
|
||||
/* Composite distributions */
|
||||
|
||||
define sample_uniform(min, max){
|
||||
return (min + sample_unit_uniform()*(max-min))
|
||||
}
|
||||
|
||||
define sample_normal(mean, sigma){
|
||||
return (mean + sigma * sample_unit_normal())
|
||||
}
|
||||
|
||||
define sample_lognormal(logmean, logstd){
|
||||
return e(sample_normal(logmean, logstd))
|
||||
}
|
||||
|
||||
define sample_normal_from_90_confidence_interval(low, high){
|
||||
/*
|
||||
Explanation of key idea:
|
||||
1. We know that the 90% confidence interval of the unit normal is
|
||||
[-1.6448536269514722, 1.6448536269514722]
|
||||
see e.g.: https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p
|
||||
or https://www.wolframalpha.com/input?i=N%5BInverseCDF%28normal%280%2C1%29%2C+0.05%29%2C%7B%E2%88%9E%2C100%7D%5D
|
||||
2. So if we take a unit normal and multiply it by
|
||||
L / 1.6448536269514722, its new 90% confidence interval will be
|
||||
[-L, L], i.e., length 2 * L
|
||||
3. Instead, if we want to get a confidence interval of length L,
|
||||
we should multiply the unit normal by
|
||||
L / (2 * 1.6448536269514722)
|
||||
Meaning that its standard deviation should be multiplied by that amount
|
||||
see: https://en.wikipedia.org/wiki/Normal_distribution?lang=en#Operations_on_a_single_normal_variable
|
||||
4. So we have learnt that Normal(0, L / (2 * 1.6448536269514722))
|
||||
has a 90% confidence interval of length L
|
||||
5. If we want a 90% confidence interval from high to low,
|
||||
we can set mean = (high + low)/2; the midpoint, and L = high-low,
|
||||
Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
|
||||
*/
|
||||
mean = (high + low) / 2.0
|
||||
std = (high - low) / (2.0 * normal90confidence)
|
||||
return sample_normal(mean, std)
|
||||
}
|
||||
|
||||
define sample_to(low, high){
|
||||
|
||||
/*
|
||||
Given a (positive) 90% confidence interval,
|
||||
returns a sample from a lognorma with a matching 90% c.i.
|
||||
Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||
we need but get a normal with 90% confidence interval [log(a), log(b)].
|
||||
Then see code for sample_normal_from_90_confidence_interval
|
||||
*/
|
||||
loglow = log(low, 2)
|
||||
loghigh = log(high, 2)
|
||||
return e(sample_normal_from_90_confidence_interval(loglow, loghigh))
|
||||
}
|
||||
|
||||
define sample_gamma(alpha){
|
||||
/*
|
||||
A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
|
||||
https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
||||
see also the references/ folder
|
||||
Note that the Wikipedia page for the gamma distribution includes a scaling parameter
|
||||
k or beta
|
||||
https://en.wikipedia.org/wiki/Gamma_distribution
|
||||
such that gamma_k(alpha, k) = k * gamma(alpha)
|
||||
or gamma_beta(alpha, beta) = gamma(alpha) / beta
|
||||
So far I have not needed to use this, and thus the second parameter is by default 1.
|
||||
*/
|
||||
|
||||
if (alpha >= 1) {
|
||||
d = alpha - (1/3);
|
||||
c = 1.0 / sqrt(9.0 * d);
|
||||
while (1) {
|
||||
v=-1
|
||||
while(v<=0) {
|
||||
x = sample_unit_normal();
|
||||
v = 1 + c * x;
|
||||
}
|
||||
v = v * v * v;
|
||||
u = sample_unit_uniform();
|
||||
if (u < (1 - (0.0331 * (x * x * x * x)))) { /* Condition 1 */
|
||||
/*
|
||||
the 0.0331 doesn't inspire much confidence
|
||||
however, this isn't the whole story
|
||||
by knowing that Condition 1 implies condition 2
|
||||
we realize that this is just a way of making the algorithm faster
|
||||
i.e., of not using the logarithms
|
||||
*/
|
||||
return d * v;
|
||||
}
|
||||
if (log(u, 2) < ((0.5 * (x * x)) + (d * (1 - v + log(v, 2))))) { /* Condition 2 */
|
||||
return d * v;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return sample_gamma(1 + alpha) * p(sample_unit_uniform(), 1 / alpha);
|
||||
/* see note in p. 371 of https://dl.acm.org/doi/pdf/10.1145/358407.358414 */
|
||||
}
|
||||
}
|
||||
|
||||
define sample_beta(a, b)
|
||||
{
|
||||
/* See: https://en.wikipedia.org/wiki/Gamma_distribution#Related_distributions */
|
||||
gamma_a = sample_gamma(a);
|
||||
gamma_b = sample_gamma(b);
|
||||
return gamma_a / (gamma_a + gamma_b);
|
||||
}
|
Loading…
Reference in New Issue
Block a user