nunosempere.github.io/rat/eamentalhealth/analysis/regressions_EA_mental_health.md

486 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

```
> colnames(A)[c(7,8)]
[1] "Which.of.these.conditions.have.you.been.formally.diagnosed.with."
[2] "Which.of.these.conditions.do.you.think.you.may.have..but.have.never.been.formally.diagnosed.with."
List_of_Mental_Illnesses = c("Depression","Anxiety", "Obsessive Compulsive Disorder", "Disordered Eating", "Alcoholism", "Drug Addiction", "Borderline Personality Disorder", "Bipolar Disorder", "Autism", "ADHD", "Schizophrenia")
(A[,i])
A$num_mental_ilnesses = integer(l) ## This produces a list of 0s.
i=7
l = 303
for(j in c(1:l)){
for(k in List_of_Mental_Illnesses){
if(grepl(k,A[,i][j])){
A$num_mental_ilnesses[j] = A$num_mental_ilnesses[j]+1
}
}
}
i=8
A$num_mental_ilnesses2 = A$num_mental_ilnesses
for(j in c(1:l)){
for(k in List_of_Mental_Illnesses){
if(grepl(k,A[,i][j])){
A$num_mental_ilnesses2[j] = A$num_mental_ilnesses2[j]+1
}
}
}
A$m_ill_or_not = integer(l)
i=7
for(j in c(1:l)){
for(k in List_of_Mental_Illnesses){
if(grepl(k,A[,i][j])){
A$m_ill_or_not[j] = 1
}
}
}
i=8
A$m_ill_or_not2=A$m_ill_or_not
for(j in c(1:l)){
for(k in List_of_Mental_Illnesses){
if(grepl(k,A[,i][j])){
A$m_ill_or_not2[j] = 1
}
}
}
> sink("readme.txt")
> colnames(A)[c(3:6)]
> summary(lm(A$m_ill_or_not ~ A[,3]))
> summary(lm(A$m_ill_or_not ~ A[,4]))
> summary(lm(A$m_ill_or_not ~ A[,5]))
> summary(lm(A$m_ill_or_not ~ A[,6]))
> A[,3]+((A[,4]=="No")*0 + (A[,4]=="No, but I regularly participate in an EA online group")*1 + (A[,4]=="Yes, occasionally")*2 + (A[,4]=="Yes")*3) +A[,5]+((A[,6]=="No")*0 + A[,6]=="Yes")*1 -> t
> summary(lm(A$m_ill_or_not ~ t))
> summary(lm(A$num_mental_ilnesses ~A[,3]))
> summary(lm(A$num_mental_ilnesses ~A[,4]))
> summary(lm(A$num_mental_ilnesses ~A[,5]))
> summary(lm(A$num_mental_ilnesses ~A[,6]))
> summary(lm(A$num_mental_ilnesses ~t))
> sink()
[1] "How.involved.are.you.in.the.Effective.Altruism.Community."
[2] "Do.you.attend.EA.meetings."
[3] "How.much.impact.do.EA.ideas.have.on.your.life."
[4] "Do.you.donate.part.of.your.income.to.GiveWell.recommended.charities."
Call:
lm(formula = A$m_ill_or_not ~ A[, 3])
Residuals:
Min 1Q Median 3Q Max
-0.4659 -0.4585 -0.4536 0.5415 0.5464
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.468410 0.078905 5.936 8.12e-09 ***
A[, 3] -0.002477 0.017804 -0.139 0.889
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4999 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 6.519e-05, Adjusted R-squared: -0.003302
F-statistic: 0.01936 on 1 and 297 DF, p-value: 0.8894
Call:
lm(formula = A$m_ill_or_not ~ A[, 4])
Residuals:
Min 1Q Median 3Q Max
-0.5238 -0.4375 -0.4359 0.5625 0.6667
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3333 0.2893 1.152 0.250
A[, 4]No 0.1905 0.2961 0.643 0.520
A[, 4]No, but I regularly participate in an EA online group 0.1505 0.3029 0.497 0.620
A[, 4]Yes, occasionally 0.1026 0.2948 0.348 0.728
A[, 4]Yes, often 0.1042 0.2926 0.356 0.722
Residual standard error: 0.501 on 298 degrees of freedom
Multiple R-squared: 0.005741, Adjusted R-squared: -0.007604
F-statistic: 0.4302 on 4 and 298 DF, p-value: 0.7868
Call:
lm(formula = A$m_ill_or_not ~ A[, 5])
Residuals:
Min 1Q Median 3Q Max
-0.4756 -0.4608 -0.4571 0.5392 0.5429
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.479256 0.114810 4.174 3.92e-05 ***
A[, 5] -0.003696 0.023524 -0.157 0.875
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.5002 on 299 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 8.256e-05, Adjusted R-squared: -0.003262
F-statistic: 0.02469 on 1 and 299 DF, p-value: 0.8753
Call:
lm(formula = A$m_ill_or_not ~ A[, 6])
Residuals:
Min 1Q Median 3Q Max
-0.4758 -0.4520 -0.4520 0.5480 0.5480
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.317e-15 3.530e-01 0.000 1.000
A[, 6]No 4.758e-01 3.558e-01 1.337 0.182
A[, 6]Yes 4.520e-01 3.550e-01 1.273 0.204
Residual standard error: 0.4992 on 300 degrees of freedom
Multiple R-squared: 0.006182, Adjusted R-squared: -0.0004435
F-statistic: 0.9331 on 2 and 300 DF, p-value: 0.3945
Call:
lm(formula = A$m_ill_or_not ~ t)
Residuals:
Min 1Q Median 3Q Max
-0.4891 -0.4565 -0.4469 0.5416 0.5608
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.496827 0.108987 4.559 7.53e-06 ***
t -0.003841 0.010449 -0.368 0.713
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4998 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.0004549, Adjusted R-squared: -0.002911
F-statistic: 0.1352 on 1 and 297 DF, p-value: 0.7134
Call:
lm(formula = A$num_mental_ilnesses ~ A[, 3])
Residuals:
Min 1Q Median 3Q Max
-0.8559 -0.8305 -0.8135 1.1441 5.1695
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.864417 0.173834 4.973 1.12e-06 ***
A[, 3] -0.008484 0.039223 -0.216 0.829
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.101 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.0001575, Adjusted R-squared: -0.003209
F-statistic: 0.04679 on 1 and 297 DF, p-value: 0.8289
Call:
lm(formula = A$num_mental_ilnesses ~ A[, 4])
Residuals:
Min 1Q Median 3Q Max
-1.0476 -0.7692 -0.7422 0.9524 4.9524
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3333 0.6315 0.528 0.598
A[, 4]No 0.7143 0.6464 1.105 0.270
A[, 4]No, but I regularly participate in an EA online group 0.5699 0.6614 0.862 0.390
A[, 4]Yes, occasionally 0.4359 0.6436 0.677 0.499
A[, 4]Yes, often 0.4089 0.6389 0.640 0.523
Residual standard error: 1.094 on 298 degrees of freedom
Multiple R-squared: 0.01426, Adjusted R-squared: 0.001027
F-statistic: 1.078 on 4 and 298 DF, p-value: 0.3677
Call:
lm(formula = A$num_mental_ilnesses ~ A[, 5])
Residuals:
Min 1Q Median 3Q Max
-0.8445 -0.8336 -0.8117 1.1555 5.1664
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.77898 0.25197 3.092 0.00218 **
A[, 5] 0.01092 0.05163 0.212 0.83263
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.098 on 299 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.0001496, Adjusted R-squared: -0.003194
F-statistic: 0.04474 on 1 and 299 DF, p-value: 0.8326
Call:
lm(formula = A$num_mental_ilnesses ~ A[, 6])
Residuals:
Min 1Q Median 3Q Max
-0.8790 -0.7966 -0.7966 1.1210 5.1210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.097e-14 7.744e-01 0.000 1.000
A[, 6]No 8.790e-01 7.807e-01 1.126 0.261
A[, 6]Yes 7.966e-01 7.788e-01 1.023 0.307
Residual standard error: 1.095 on 300 degrees of freedom
Multiple R-squared: 0.005158, Adjusted R-squared: -0.001474
F-statistic: 0.7778 on 2 and 300 DF, p-value: 0.4604
Call:
lm(formula = A$num_mental_ilnesses ~ t)
Residuals:
Min 1Q Median 3Q Max
-0.8826 -0.8265 -0.8100 1.1306 5.1636
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.89580 0.24014 3.730 0.000229 ***
t -0.00660 0.02302 -0.287 0.774576
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.101 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.0002766, Adjusted R-squared: -0.003089
F-statistic: 0.08217 on 1 and 297 DF, p-value: 0.7746
> sink("readme.txt", append=TRUE)
> summary(lm(A$num_mental_ilnesses2 ~A[,3]))
> summary(lm(A$num_mental_ilnesses2 ~A[,4]))
> summary(lm(A$num_mental_ilnesses2 ~A[,5]))
> summary(lm(A$num_mental_ilnesses2 ~A[,6]))
> summary(lm(A$num_mental_ilnesses2 ~t))
> summary(lm(A$m_ill_or_not2 ~A[,3]))
> summary(lm(A$m_ill_or_not2 ~A[,4]))
> summary(lm(A$m_ill_or_not2 ~A[,5]))
> summary(lm(A$m_ill_or_not2 ~A[,6]))
> summary(lm(A$m_ill_or_not2 ~t))
> sink()
Call:
lm(formula = A$num_mental_ilnesses2 ~ A[, 3])
Residuals:
Min 1Q Median 3Q Max
-1.9681 -1.5266 0.1202 1.1202 9.2968
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.05642 0.23945 8.588 5.07e-16 ***
A[, 3] -0.08830 0.05403 -1.634 0.103
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.517 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.008912, Adjusted R-squared: 0.005575
F-statistic: 2.671 on 1 and 297 DF, p-value: 0.1033
Call:
lm(formula = A$num_mental_ilnesses2 ~ A[, 4])
Residuals:
Min 1Q Median 3Q Max
-2.0159 -1.4766 -0.0159 0.9841 8.9841
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3333 0.8693 0.383 0.7016
A[, 4]No 1.6825 0.8897 1.891 0.0596 .
A[, 4]No, but I regularly participate in an EA online group 1.6344 0.9104 1.795 0.0736 .
A[, 4]Yes, occasionally 1.3462 0.8858 1.520 0.1297
A[, 4]Yes, often 1.1432 0.8794 1.300 0.1946
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.506 on 298 degrees of freedom
Multiple R-squared: 0.02933, Adjusted R-squared: 0.0163
F-statistic: 2.251 on 4 and 298 DF, p-value: 0.06363
Call:
lm(formula = A$num_mental_ilnesses2 ~ A[, 5])
Residuals:
Min 1Q Median 3Q Max
-2.0011 -1.5848 0.1654 1.1654 9.3319
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.08439 0.34797 5.990 6.01e-09 ***
A[, 5] -0.08326 0.07130 -1.168 0.244
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.516 on 299 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.004541, Adjusted R-squared: 0.001212
F-statistic: 1.364 on 1 and 299 DF, p-value: 0.2438
Call:
lm(formula = A$num_mental_ilnesses2 ~ A[, 6])
Residuals:
Min 1Q Median 3Q Max
-1.7984 -1.6158 0.2016 1.2016 9.2016
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.878e-15 1.071e+00 0.000 1.0000
A[, 6]No 1.798e+00 1.079e+00 1.666 0.0967 .
A[, 6]Yes 1.616e+00 1.077e+00 1.501 0.1345
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.514 on 300 degrees of freedom
Multiple R-squared: 0.01166, Adjusted R-squared: 0.005067
F-statistic: 1.769 on 2 and 300 DF, p-value: 0.1723
Call:
lm(formula = A$num_mental_ilnesses2 ~ t)
Residuals:
Min 1Q Median 3Q Max
-2.0964 -1.5447 0.1544 1.1544 9.2547
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.19677 0.33090 6.639 1.5e-10 ***
t -0.05016 0.03172 -1.581 0.115
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.518 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.008347, Adjusted R-squared: 0.005008
F-statistic: 2.5 on 1 and 297 DF, p-value: 0.1149
Call:
lm(formula = A$m_ill_or_not2 ~ A[, 3])
Residuals:
Min 1Q Median 3Q Max
-0.7611 -0.6938 0.2658 0.2927 0.3062
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.77453 0.07110 10.894 <2e-16 ***
A[, 3] -0.01345 0.01604 -0.839 0.402
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4504 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.002362, Adjusted R-squared: -0.0009972
F-statistic: 0.7031 on 1 and 297 DF, p-value: 0.4024
Call:
lm(formula = A$m_ill_or_not2 ~ A[, 4])
Residuals:
Min 1Q Median 3Q Max
-0.8710 -0.6875 0.2540 0.3125 0.6667
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3333 0.2595 1.285 0.2000
A[, 4]No 0.4127 0.2656 1.554 0.1213
A[, 4]No, but I regularly participate in an EA online group 0.5376 0.2718 1.978 0.0488 *
A[, 4]Yes, occasionally 0.3590 0.2644 1.357 0.1757
A[, 4]Yes, often 0.3542 0.2625 1.349 0.1783
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4495 on 298 degrees of freedom
Multiple R-squared: 0.02254, Adjusted R-squared: 0.009421
F-statistic: 1.718 on 4 and 298 DF, p-value: 0.1459
Call:
lm(formula = A$m_ill_or_not2 ~ A[, 5])
Residuals:
Min 1Q Median 3Q Max
-0.7305 -0.7177 0.2772 0.2798 0.2823
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.733081 0.103298 7.097 9.31e-12 ***
A[, 5] -0.002572 0.021165 -0.122 0.903
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.45 on 299 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 4.938e-05, Adjusted R-squared: -0.003295
F-statistic: 0.01477 on 1 and 299 DF, p-value: 0.9034
Call:
lm(formula = A$m_ill_or_not2 ~ A[, 6])
Residuals:
Min 1Q Median 3Q Max
-0.7345 -0.7016 0.2655 0.2984 0.2984
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.837e-15 3.175e-01 0.000 1.0000
A[, 6]No 7.016e-01 3.200e-01 2.192 0.0291 *
A[, 6]Yes 7.345e-01 3.193e-01 2.300 0.0221 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.449 on 300 degrees of freedom
Multiple R-squared: 0.01804, Adjusted R-squared: 0.0115
F-statistic: 2.756 on 2 and 300 DF, p-value: 0.06514
Call:
lm(formula = A$m_ill_or_not2 ~ t)
Residuals:
Min 1Q Median 3Q Max
-0.7515 -0.7072 0.2767 0.2868 0.3009
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.759607 0.098306 7.727 1.71e-13 ***
t -0.004031 0.009425 -0.428 0.669
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4508 on 297 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.0006157, Adjusted R-squared: -0.002749
F-statistic: 0.183 on 1 and 297 DF, p-value: 0.6691
```