nunosempere.github.io/rat/Discontinuous-Progress.md

14 KiB
Raw Blame History

Discontinuous progress in technological trends.

AI Impacts has a list of promising research projects. One of them reads as follows:

Look for technologies that may have caused discontinuous progress on any metric. Find data for that metric over the relevant time, and measure the size of any discontinuity in terms of how many years of progress at usual rates happened at once. We have a list of technologies which others purport were discontinuous, to check. A particularly important one is recent Go AI as a discontinuity in Elo rating achievable, adjusted for hardware.

This is an input to our ongoing investigation into how frequently, and when, technological trends undergo discontinuous progress. This should inform our guesses about how likely AI development is to see discontinuous progress, both by providing a base rate, and telling us whether AI technologies seem especially susceptible. We take discontinuous progress in AI to be related to risk of fast takeoff.

Discontinuity from the SS Great Eastern

At the point of transition between wooden and metal ships, the engineer Isambard Kingdom Brunel skipped ahead and built an ambitious ship which, with a length of 211 meters, wasn't quite twice as big as the ones preceding it: the SSC Great Eastern. It represented a discontinuity of about 40 years. Afterwards, competition between liner companies (and later, cruises) kept a discontinuity from arising, though ship size kept increasing.

Three difficulties arise: Firstly, the most convenient data only includes passenger ships. However, the categories "biggest ship" and "biggest passenger ship" were often synonymous in the period of interest: passenger ships were routinely the biggest ships at least until WW1 (SS President, the SS British Queen, SS Great Eastern, the RMS Celtic, RMS Baltic, the RMS Mauretania, the RMS Titanic, etc). However, because this can be a potential concern, we also use a second dataset on "sailing vessels", described as:

This is a list of large sailing vessels, past and present, including sailing mega yachts, tall ships, sailing cruise ships, and large sailing military ships. It is sorted by overall length. The list, which is in the form of a table, covers vessels greater than about 200 feet (61 m) LOA, which includes overhangs and spars (length on deck or waterline length are other common measures of ship length).

This second dataset is centered on our period of interest, and also allows to see that considering or not considering the beam doesn't make a difference. But it is also greatly limited in that steamships, not sailing ships, started to dominate in length before the turn of the twentieth century, and thus, this dataset is most useful before that.

Secondly, the sizes of the ships of antiquity are not well recorded. For this reason, the main dataset just considers data for European ships, starting in the 19th century, and exclude f.ex., Chinese, Greek and Javanese naval history. I feel that this makes sense, because the Thalamegos's size of 115 meters (200 BCE) just wasn't surpassed by anything in Europe until the SS Great Eastern itself, although perhaps it was by poorly documented Chinese and Javanese vessels.

Thirdly, methodological caution is in order: because the example was brought to my attention precisely because of its surprisingness, it's difficult to extract conclusions about base rates. Perhaps going through this Wikipedia list of engineering branches and this other one of branches of science might prove more fruitful for arriving at base rates.

Nonetheless, perhaps the prominent role of the engineer Isambard Kingdom Brunel in the construction of the SS Great Eastern, as narrated by Wikipedia, highlights that the actions of a lone individual, acting in an exploratory manner, or directly disregarding economic incentives, can lead to a decently sized technological discontinuity.

I cannot act under any supervision, or form part of any system which recognises any other advisor than myself ... if any doubt ever arises on these points I must cease to be responsible and cease to act.

Here follow six images which make the discontinuity apparent. In the third and fourth, the already mentioned Thalamegos and the Syracusia (designed by Archimedes) are given as reference points. The last two images correspond to our second dataset of sailing vessels. We notice that the Great Eastern, built in 1858, was first surpassed in the year 1899, for a discontinuity of 41 years. Wikipedia confirms this, and notes that the RMS Oceanic did not exceed the Great Eastern in tonnage, only in length.






Sources:

Wikipedia: List of longuest wooden ships
Timeline of largest passenger ships
Wikipedia: List of longuest ships
Big Ships in History, 1913, R.C. Anderson.
Wikipedia: List of large saling vessels

Data

Wikipedia: Timeline of largest passenger ships (.csv)
Largest ship record progression (.csv)
Large sailing vessels (.csv)
Large sailing vessels, processed (.csv)

Discontinuity in the circumnavigation of the Earth

We find 4 discontinuities:

  1. From the first two explorers to later followers. Year = 1586. Estimated discontinuity equivalent to 203 / 240 years of previous progress.
  2. From big expeditions to liners and trains. Year 1870. Estimated discontinuity equivalent to 740 / 1986 years of equivalent progress.
  3. From ships to aircraft. Year 1931. Estimated discontinuity equivalent to 11 / 40.5 years
  4. From military aircraft to the first cosmonaut, Yuri Gagarin. Year 1961. Estimated discontinuity equivalent to 1 / 27.5 years.

The precise magnitude of these discontinuities depends on whether we measure time, or its logarithm. In both cases, we get very large discontinuities, plausibly of more than 100 years. However, our estimates are inexact. In particular, our data only shines in the period 1870 - 1949, and thus we are most confident in the discontinuity created by the first circumnavigation by plane (as opposed to by ship & train). This happened in 1931 and our two estimates of its magnitude are 11 and 40.5 years.

If we plot the overall time record, in minutes, we can appreciate the first two discontinuities.

They become apparent if we plot the logarithm (base 2) of the time (in minutes).

Here is furthermore a table:

Year Rate of progress before Discontinuity in terms of time of travel = New record - current record How much extra time would have been needed? = (point - previous predicted point)/ previous rate of progress = (discontinuity - expected progress) / previous rate of progress
1586 (1082-1018) days /(1577-1519) years = 1.1034 days/year 1018-781 = 237 days (237 days - (1589-1577)*1.1 days) / 1.1 days / year= 203 years
1870 (781 605) days / (1841 1586) years = 0.69 days/year 605-80 days = 525 days (525 days - (1870-1849 years)*0.69 days / year ) / 0.69 days/year = 740 years
1931 (80-21) days / (1929-1870) years = 1 day / year 21-8 days = 13 days (13 days - (1931 - 1929) years * 1 day/year) / 1 day/year = 11 years
1961 (94 - 45) hours / (1957- 1949) years = 6.1 hours / year 32 hours and 49 minutes - 108 minutes = 31 hours ( 31 hours - 6.1 hours/year *(1961-1957) years ) / 6.1 hours / year ~ 1 year

And here is that same table if we measure progress according to the logarithm (i.e., if halving the time needed is always equally impressive).

Year Rate of progress before (where log = log of base 2) Discontinuity in terms of time of travel = New record - current record How much extra time would have been needed? = (point - previous predicted point)/ previous rate of progress = (discontinuity - expected progress) / previous rate of progress
1586 (log2(1082)-log2(1018)) log2(days) /(1577-1519) years = 0.001444656 log2(days)/year log2(1018)-log2(781) = 0.3823431 log2(days) (0.3823431 log2(days) - (1589-1577)*0.001516602 log2(days)) / 0.08796 log2(days)/year= 240 years
1870 (log2(781) log2(605)) days / (1841 1586) years = 0.001444656 log2(days)/year log2(605)-log2(80) days = 2.9 log(days) (2.9 log(days) - (1870-1849 years)*0.001444656 log2(days)/year ) / 0.001444656 log2(days)/year = 1986 years
1931 (log2(80)-log2(21)) days / (1929-1870) years = 0.03270527 log2(days)/year log2(21)-log2(8) days = 1.39 log2(days) (1.392317 log(days) - (1931 - 1929) years * 0.03270527 log(days)/year / 0.03270527 log2(days)/year = 40.5 years
1961 (log2(94) - log2(45)log2(hours) / (1957- 1949) years = 0.132842 log2(hours) / year log2(32 hours and 49 minutes) - log2(108 minutes) = 4.18836 log2(hours) ( 4.18836 log2(hours) - 0.132842 log2(hours) / year *(1961-1957) years ) / 27.52888 log2(hours) / year ~ 27.5 years

It's interesting to see that according to the first measure, the first cosmonaut wasn't really a discontinuity (a deviation of 1 year from the predicted value). After Gagarin, one might think that it's not possible to reduce the time any further. Note, however, that sending a digital copy of a human through the internet might count. Also note that your definitions get in the way.

It's also interesting to consider that today, a packet might take less than half a second to circumnavigate the Earth (perhaps 180-400 miliseconds, according to a source from 2010). Another discontinuity to investigate might be the time needed to send a message through the Atlantic.

Sources:

Wikipedia: List of circumnavigations
Wikipedia: Circumnavigation record progression

Data

Wikipedia: List of circumnavigations until Yuri Gagarin (.csv)
Fastest circumnavigation record progression (.csv)

Also considered / under consideration:

  • Saline solution for diarrhea, as opposed to previous treatments.
  • Time to send a message across the atlantic.
  • Discontinuities for yatch races (No discontinuities are apparent. I do not intend to research this further)
  • Transatlantic sailing record (No discontinuities are apparent. I do not intend to research this further).

It could also be interesting to research cases in which a lone individual is causally responsible for discontinuous progress. Norman Borlaug comes to mind.

Credit

The SS Great Eastern was brought to my attention in the "Bountied Rationality" Facebook group.