Fix cURL
This commit is contained in:
parent
949438203c
commit
fb53c015f6
97
strmlt.py
97
strmlt.py
|
@ -32,69 +32,74 @@ if __name__ == "__main__":
|
||||||
uid = st.number_input("What is your user ID?", min_value=1, value=28899)
|
uid = st.number_input("What is your user ID?", min_value=1, value=28899)
|
||||||
uid = str(uid)
|
uid = str(uid)
|
||||||
|
|
||||||
curl_value = ""
|
curl_value = """curl 'https://www.gjopen.com/' \\
|
||||||
|
-H 'authority: www.gjopen.com' \\
|
||||||
|
-H '...: ...'"""
|
||||||
curl_command = st.text_area(
|
curl_command = st.text_area(
|
||||||
"Ugh... Gimme your cURL info...", value=curl_value.strip()
|
"Ugh... Gimme your cURL info...", value=curl_value
|
||||||
)
|
)
|
||||||
curl_content = uncurl.parse_context(curl_command)
|
curl_command = "".join(curl_command.split("\\\n"))
|
||||||
headers, cookies = curl_content.headers, curl_content.cookies
|
|
||||||
|
if curl_command != curl_value:
|
||||||
|
|
||||||
# ---
|
curl_content = uncurl.parse_context(curl_command)
|
||||||
|
headers, cookies = curl_content.headers, curl_content.cookies
|
||||||
|
|
||||||
questions = get_resolved_questions(uid, platform_url, headers, cookies)
|
# ---
|
||||||
|
|
||||||
st.write(f"{len(questions)} questions you forecasted on have resolved.")
|
questions = get_resolved_questions(uid, platform_url, headers, cookies)
|
||||||
|
|
||||||
# ---
|
st.write(f"{len(questions)} questions you forecasted on have resolved.")
|
||||||
# TODO: Make a progress bar..?
|
|
||||||
|
|
||||||
forecasts = get_forecasts(uid, questions, platform_url, headers, cookies)
|
# ---
|
||||||
resolutions = get_resolutions(questions, platform_url, headers, cookies)
|
# TODO: Make a progress bar..?
|
||||||
|
|
||||||
# ---
|
forecasts = get_forecasts(uid, questions, platform_url, headers, cookies)
|
||||||
|
resolutions = get_resolutions(questions, platform_url, headers, cookies)
|
||||||
|
|
||||||
num_forecasts = sum(len(f) for f in forecasts.values())
|
# ---
|
||||||
st.write(
|
|
||||||
f"On these {len(questions)} questions you've made {num_forecasts} forecasts."
|
|
||||||
)
|
|
||||||
|
|
||||||
flatten = lambda t: [item for sublist in t for item in sublist]
|
num_forecasts = sum(len(f) for f in forecasts.values())
|
||||||
y_true = flatten(resolutions[q]["y_true"] for q in questions for _ in forecasts[q])
|
st.write(
|
||||||
y_pred = flatten(f["y_pred"] for q in questions for f in forecasts[q])
|
f"On these {len(questions)} questions you've made {num_forecasts} forecasts."
|
||||||
|
|
||||||
# Note that I am "double counting" each prediction.
|
|
||||||
if st.checkbox("Drop last"):
|
|
||||||
y_true = flatten(
|
|
||||||
resolutions[q]["y_true"][:-1] for q in questions for _ in forecasts[q]
|
|
||||||
)
|
)
|
||||||
y_pred = flatten(f["y_pred"][:-1] for q in questions for f in forecasts[q])
|
|
||||||
|
|
||||||
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
flatten = lambda t: [item for sublist in t for item in sublist]
|
||||||
|
y_true = flatten(resolutions[q]["y_true"] for q in questions for _ in forecasts[q])
|
||||||
|
y_pred = flatten(f["y_pred"] for q in questions for f in forecasts[q])
|
||||||
|
|
||||||
st.write(f"Which gives us {len(y_pred)} datapoints to work with.")
|
# Note that I am "double counting" each prediction.
|
||||||
|
if st.checkbox("Drop last"):
|
||||||
|
y_true = flatten(
|
||||||
|
resolutions[q]["y_true"][:-1] for q in questions for _ in forecasts[q]
|
||||||
|
)
|
||||||
|
y_pred = flatten(f["y_pred"][:-1] for q in questions for f in forecasts[q])
|
||||||
|
|
||||||
# ---
|
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
||||||
|
|
||||||
strategy = st.selectbox(
|
st.write(f"Which gives us {len(y_pred)} datapoints to work with.")
|
||||||
"Which binning stranegy do you prefer?",
|
|
||||||
["uniform", "quantile"],
|
|
||||||
)
|
|
||||||
|
|
||||||
recommended_n_bins = int(np.sqrt(len(y_pred))) if strategy == "quantile" else 20 + 1
|
# ---
|
||||||
n_bins = st.number_input(
|
|
||||||
"How many bins do you want me to display?",
|
|
||||||
min_value=1,
|
|
||||||
value=recommended_n_bins,
|
|
||||||
)
|
|
||||||
|
|
||||||
fig = plotly_calibration(y_true, y_pred, n_bins=n_bins, strategy=strategy)
|
strategy = st.selectbox(
|
||||||
st.plotly_chart(fig, use_container_width=True)
|
"Which binning stranegy do you prefer?",
|
||||||
|
["uniform", "quantile"],
|
||||||
|
)
|
||||||
|
|
||||||
overconf = overconfidence(y_true, y_pred)
|
recommended_n_bins = int(np.sqrt(len(y_pred))) if strategy == "quantile" else 20 + 1
|
||||||
st.write(f"Your over/under- confidence score is {overconf:.2f}.")
|
n_bins = st.number_input(
|
||||||
|
"How many bins do you want me to display?",
|
||||||
|
min_value=1,
|
||||||
|
value=recommended_n_bins,
|
||||||
|
)
|
||||||
|
|
||||||
# ---
|
fig = plotly_calibration(y_true, y_pred, n_bins=n_bins, strategy=strategy)
|
||||||
|
st.plotly_chart(fig, use_container_width=True)
|
||||||
|
|
||||||
fig = plotly_calibration_odds(y_true, y_pred, n_bins=n_bins, strategy=strategy)
|
overconf = overconfidence(y_true, y_pred)
|
||||||
st.plotly_chart(fig, use_container_width=True)
|
st.write(f"Your over/under- confidence score is {overconf:.2f}.")
|
||||||
|
|
||||||
|
# ---
|
||||||
|
|
||||||
|
fig = plotly_calibration_odds(y_true, y_pred, n_bins=n_bins, strategy=strategy)
|
||||||
|
st.plotly_chart(fig, use_container_width=True)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user